Introduction	Algorithm improvements	Summary	Reference
0000	000000000	000	0

Progress on the Hadronic Vacuum Polarizaiton Contribution to Muon g-2 from Lattice QCD

Vaishakhi Moningi University of Connecticut

July 29, 2024

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 볼 - 키익 ♡ 1/ 22

ntrod	uction	

Algorithm improvements

Summary

Collaborators

HVP with staggered fermions Thomas Blum (UConn), Luchang Jin (UConn), Christopher Aubin (Fordham), Maarten Golterman (SFSU), Santiago Peris (Barcelona)

Introduction	Algorithm improvements	Summary	Reference
•000		000	0

Introduction

Algorithm improvements

B Summary

A Reference

< □ > < @ > < 볼 > < 볼 > 트 = ♡ < ♡ 3/ 22

Introduction	Algorithm improvements	Summary	Reference
0000			

Muon g-2 experimental measurement

- Anomalous magnetic moment of the muon $a_{\mu} = (g-2)/2$
- Fermilab results stand at 0.203 ppm!

Run-2/3 Result: FNAL + BNL Combination

a_µ(FNAL) = 0.00 116 592 055(24) [203 ppb]

61 8/10/23 James Mott: New Results from Muon g-2

Introd	uction
0000	

Algorithm improvements

Summary

Theoretical framework

Figure 1: The quark connected diagram contributing to the HVP

$$\begin{split} a_{\mu}^{\mathrm{HVP}} &= 4\alpha^{2} \int_{0}^{\infty} dq^{2} f\left(q^{2}\right) \hat{\Pi}\left(q^{2}\right) \\ & \xrightarrow{\text{time-mom rep}}_{\text{[Bernecker and Meyer 2011]}} 2 \sum_{t=0}^{T/2} w(t) C(t) \end{split}$$
 (1)

where $\hat{\Pi}\left(q^{2}\right)=\Pi\left(q^{2}\right)-\Pi(0)$ is the subtracted HVP

$$\begin{split} f(q^2) &= \frac{m_{\mu}^2 q^2 Z^3 (1 - q^2 Z)}{1 + m_{\mu}^2 q^2 Z^2}, \\ Z &= -\frac{q^2 - \sqrt{q^4 + 4m_{\mu}^2 q^2}}{2m_{\mu}^2 q^2}. \\ w(t) &= 4\alpha^2 \int_0^\infty dq^2 f(q^2) \left[\frac{\cos qt - 1}{q^2} + \frac{t^2}{2}\right] \end{split}$$

< □ > < @ > < 글 > < 글 > 三日 - 키익은 5/22

Introduction 000●	Algorithm improvements	Summary 000	Reference O

Two-point correlation function

2-point current-current function

$$C(t) = \frac{1}{3} \sum_{\vec{x},i} \langle J^{i}(\vec{x},t) J^{i}(0) \rangle = \frac{1}{3} \sum_{\vec{x}} \left\langle M_{0,x}^{-1} \gamma_{\mu} M_{x,0}^{-1} \gamma_{\nu} \right\rangle$$
(2)

• Here, $J_{\mu}(x) = [\bar{\psi}\gamma_{\mu}\psi](x)$ is the electromagnetic current.

• On the lattice this current is not conserved, so we use a point-split current that is exactly conserved,

$$J^{\mu}(x) = \frac{1}{2} \eta_{\mu}(x) (\bar{\chi}(x+\hat{\mu})U^{\dagger}_{\mu}(x)\chi(x) + \bar{\chi}(x)U_{\mu}(x)\chi(x+\hat{\mu}))$$

Introduction	Algorithm improvements	Summary	Reference
0000	•000000000	000	O

Introduction

Algorithm improvements

B Summary

A Reference

<□▶ <@▶ < ≧▶ < ≧▶ ≤ 볼▷ 물]⊒ - 키٩ᠿ - 7/22

Introduction	Algorithm improvements	Summary	Reference
0000	0●00000000	000	0

Motivation

From the spectral decomposition of the propagator

$$S(x,y) = \sum_{\lambda \le \lambda_{low}} \frac{\langle x | \lambda \rangle \langle \lambda | y \rangle}{\lambda} + \sum_{\lambda > \lambda_{low}} \frac{\langle x | \lambda \rangle \langle \lambda | y \rangle}{\lambda} = S_L + S_H$$

we separate C(t) into four parts: low-low, low-high, high-low, and high-high[Giusti et al. 2004].

$$C_{\mu\nu}(t) = \sum_{x,y} \operatorname{Tr} \gamma_{\mu} G(x,y) \gamma_{\mu} G(y,x) = C_{LL} + C_{LH} + C_{HL} + C_{HH}$$
(3)

In the previous work [Aubin et al. 2020; Aubin et al. 2022], C(t) was just divided into pure low-mode and the rest.

Figure 2: The integrand (w(t)C(t)) in Eq. (1). No LMA (left), total (middle), LMA only (right).

- In previous work, we used LMA for noisy long-distance part of the correlator.
- LL part yields full-volume average for both source and sink points.
- The rest (HL+LH+HH) averaged over small number of source points.
- LL part has smaller fluctuations compared to the total (Fig. 2).

Algorithm improvements: High-Low contribution

- Now, we would like to compute HL part separately instead of together with the HH¹.
- The high-low contribution is

$$C_{HL} = \sum_{n} \sum_{\boldsymbol{y}} \langle n|y \rangle U_{\nu}(y) G_{H}(y + \hat{\nu}, x + \hat{\mu}) U_{\mu}^{\dagger}(x) \frac{\langle x|n \rangle}{\lambda_{n}} + 3 \text{ other terms}$$

$$(4)$$

¹We thank Simon Kuberski and the Mainz group for discussions $\langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle = 0 Q^{\circ} (10/22)$

Combining eigenvectors with random coefficients

The calculation of the low-high part is still expensive ($N_T \times N_{low}$ sources). To dramatically reduce the cost,

- we combine low-mode sources on a time-slice using unique random numbers for each mode.
- Contract at the sink with the same random numbers to eliminate unwanted cross-terms on average.

$$\begin{pmatrix} \frac{r_0}{\sqrt{\lambda_0}} \langle 0| + \frac{r_1}{\sqrt{\lambda_1}} \langle 1| \end{pmatrix} \left(\frac{r_0}{\sqrt{\lambda_0}} |0\rangle + \frac{r_1}{\sqrt{\lambda_1}} |1\rangle \right) = \frac{r_0^2}{\lambda_0} \langle 0|0\rangle + \frac{r_1^2}{\lambda_1} \langle 1|1\rangle \\ + \frac{r_0r_1}{\sqrt{\lambda_0\lambda_1}} \underbrace{(\langle 0|1\rangle + \langle 1|0\rangle)}_{\text{crossterms}}$$

$$= C_{\text{exact}} \quad (\because r_i^2 = 1, \ \langle r_i r_j \rangle = \delta_{ij})$$

 $\lambda_i =$ eigenvalues of Dirac operator

• This adds random noise which can be reduced by doing more "hits" with additional random-sources.

Introd	uction
0000	

Algorithm	improvements
0000000	000

Results

m_{π} (MeV)	a (fm)	size	L	configs (LL-HL-HH)
130	0.087	$64^3 \times 96$	5.62	31-31-31
134	0.042	$144^3 \times 288$	6.048	6-18-27

- Reduced $N_T imes N_{
 m low}$ solves to $N_T imes N_{
 m hits}$ solves
- 8000 low modes were used.

12/ 22

• Error from high-low part error is suppressed from low-low errors.

4.0

• Our current method with just "1 hit" shows an improvement of 8% and with "10 hits" 17.3% in the long distance window (2.6-3.4 fm)

2.0

2.5

3.0

t(fm)

3.5

4.0

Low-low part error dominates in the total!

3.5

2.0

2.5

3.0

t(fm)

introduction	Algorithm improvements	Summary	Reference
0000		000	0

Algorithm improvements: Low-Low contribution

The low-low part of the correlation function is

$$C_{LL} = \sum_{m,n} \sum_{\vec{x}} \frac{1}{\lambda_m \lambda_n} \Lambda^{\dagger}_{\mu}(x)_{mn} \Lambda^{\dagger}_{\nu}(y)_{nm} + \cdots$$
 (5)

the meson field defined as

$$\left(\Lambda_{\mu}(t)\right)_{n,m} = \sum_{\vec{x}} \left\langle n|x\right\rangle U_{\mu}(x) \left\langle x+\mu|m\right\rangle$$

- This scales linearly in the size of the eigenvectors and quadratically with the number of eigenvectors $(N_S^3 \times N_T)$
- To have a significant speedup, we "sparsen" the eigenvectors.
- As a full volume average may be wasteful as nearby points will be almost 100% correlated on a fine lattice.
- We sparsen randomly to choose the location for the hypercube on a timeslice.

Figure 3: Low-low contribution from contracting the meson fields

- For the demonstration purpose, we have used 800 low modes on 1-configuration.
- Sparsening by (s,t) reduces the number of eigenvectors required to compute our meson fields from N³_S × N_T to (N_S/s)³ × (N_T/t).

Preliminary results on $144^3 \times 288$ ensemble

$a_{\mu} \times 10^{10}$	window (t_0, t_1, Δ) (fm)
207.24(34)	(0.4, 1.0, 0.15)
94.57(88)	(1.5,1.9,0.15)

• Intermediate window quantity:

$$a_{\mu} = 2\sum_{t=0}^{T/2} C(t)w(t) \left(\Theta(t,t_0,\Delta) - \Theta(t,t_1,\Delta)\right)$$

with,
$$\Theta(t,t',\Delta) = \frac{1}{2} \left(1 + \tanh \frac{t-t'}{\Delta}\right)$$

Errors shown are Statistical

Introduction 0000	Algorithm improvements	Summary ●○○	Reference 0

Introduction

Algorithm improvements

Summary

A Reference

< □ > < @ > < 볼 > < 볼 > 트 = ♡ < ♡ - 17/22

Introduction	Algorithm improvements	Summary	Reference
0000	000000000	O●O	0

- The new method reduces the statistical noise in the long-distance part of the two-point correlation function.
- The added expense of separately computing HL is a trade-off for improving the errors in this region and using fewer sources for the HH part (which now doesn't have the extra noise of the HL contributions).
- Physical point calculations nearly complete at a = 0.087 fm.
- And a = 0.042 fm calculations are in progress.

Summary ○○●

Acknowledgements

• Highly-improved staggered quark (HISQ) ensemble from the MILC collaboration with the HPQCD value $w_0 = 0.1715(9)$ fm

$\approx a/{\rm fr}$	n L/fm	$N_s^3 \times N_t$	$am_l^{\rm sea}/am_s^{\rm sea}/am_c^{\rm sea}$	w_0/a
0.15	4.85	$32^{3} \times 48$	0.002426/0.0673/0.8447	1.13227(18)
0.12	5.81	$48^3 \times 64$	0.001907/0.05252/0.6382	1.41060(28)
0.09	5.61	$64^3 \times 96$	0.00120/0.0363/0.432	1.95148(41)
0.09^{\star}	5.61	$64^3 \times 96$	0.001326/0.03636/0.4313	1.95021(57)
0.06	5.45	$96^3 \times 128$	0.0008/0.022/0.260	3.01838(92)
0.04	6.12	$144^3\times 288$	$0.000569/0.01\ 555/0.1827$	4.03242(195)

Introduction	Algorithm improvements	Summary	Reference
0000	000000000	000	●

Introduction

Algorithm improvements

③ Summary

4 Reference

References I

- Aubin, Christopher et al. (2020). "Light quark vacuum polarization at the physical point and contribution to the muon g 2". In: Phys. Rev. D 101.1, p. 014503. DOI: 10.1103/PhysRevD.101.014503. arXiv: 1905.09307 [hep-lat].
- Aubin, Christopher et al. (2022). "Muon anomalous magnetic moment with staggered fermions: Is the lattice spacing small enough?" In: *Phys. Rev. D* 106.5, p. 054503. DOI: 10.1103/PhysRevD.106.054503. arXiv: 2204.12256 [hep-lat].
- Bernecker, David and Harvey B. Meyer (2011). "Vector Correlators in Lattice QCD: Methods and applications". In: *Eur.Phys.J.* A47, p. 148. DOI: 10.1140/epja/i2011-11148-6. arXiv: 1107.4388.
- Blum, Thomas (2003). "Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment". In: *Phys.Rev.Lett.* 91, p. 052001. DOI: 10.1103/PhysRevLett.91.052001. arXiv: /0212018.
 Blum, Thomas et al. (2013). "The Muon (g-2) Theory Value: Present and

Future". In: arXiv: 1311.2198 [hep-ph].

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ` □

- Giusti, Leonardo et al. (2004). "Low-energy couplings of QCD from current correlators near the chiral limit". In: JHEP 04, p. 013. DOI: 10.1088/1126-6708/2004/04/013. arXiv: /0402002.
- Rafael, Eduardo de (1994). "Hadronic contributions to the muon g-2 and low-energy QCD". In: *Phys. Lett.* B322, pp. 239–246. DOI: 10.1016/0370-2693(94)91114-2. arXiv: hep-ph/9311316 [hep-ph].