Quark Mass dependence of the $\Delta(1232)$ resonance parameters.

Srijit Paul University of Maryland, College Park

In Collaboration: **Ferenc Pittler**, Stefan Krieg, Luka Leskovec, Stefan Meinel, John Negele, Marcus Petschlies, Andrew Pochinsky, Sergey Syritsyn

LATTICE 2024, Liverpool

• Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.

• Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.

• Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.
- Substantial uncertainty in predicting neutrino-nucleus cross section at next-generation neutrino-oscillation experiments.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.
- Substantial uncertainty in predicting *neutrino-nucleus cross section* at next-generation neutrino-oscillation experiments.

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.
- Substantial uncertainty in predicting *neutrino-nucleus cross section* at next-generation neutrino-oscillation experiments.
- Recent $\Delta(1232)$ resonance parameters from $N\pi$ Roy-Steiner equations.

[Hoferichter.et.al(2024)]

- Lowest lying baryon resonance $\Delta(1232)$ I = 3/2, J = 3/2 in π -N elastic scattering.
- Input to computing the " Δ " Transition Form Factors using BHWL formalism.
- m_{Δ} - $m_N \not\rightarrow 0$ in the chiral limit $\implies m_{\Delta}$ input to generalized χ PT.
- Substantial uncertainty in predicting *neutrino-nucleus cross section* at next-generation neutrino-oscillation experiments.
- Recent $\Delta(1232)$ resonance parameters from $N\pi$ Roy-Steiner equations.

[Hoferichter.et.al(2024)]

• Lattice community $m \to m_{phys}$, significant contribution of *multihadron states* in computation of *hadronic observables*.

Lattice Setup

- Budapest-Marseille-Wuppertal simulations $N_f = 2 + 1$ tree-level clover-improved Wilson fermions coupled to doubly HEX smeared links.,

[Durr.et.al., 1011.2711]

Label	$N_s^3 \times N_t$	$L (\mathrm{fm})$	$a (\mathrm{fm})$	m_{π} (MeV)	$m_{\pi}L$
A7	$24^3 \times 48$	2.8	pprox 0.116	≈ 247	3.6
A8	$32^3 \times 48$	3.7	pprox 0.116	≈ 249	4.7
A11	$24^3 \times 48$	2.8	pprox 0.116	≈ 199	3.6
A12	$32^3 \times 48$	3.7	pprox 0.116	≈ 199	4.7
A15	$48^3 \times 48$	5.6	pprox 0.116	≈ 137	4.0

Table: Parameters of the lattice gauge-field ensembles

• Construct single hadron & bilocal multi-hadron Interpolators.

10

• Construct single hadron & bilocal multi-hadron Interpolators. pion interpolator:

$$\pi(\vec{p}) = \sum_{\vec{x}} \bar{d}(\vec{x}) \gamma_5 u(\vec{x}) e^{i\vec{p}\cdot\vec{x}}$$

Nucleon interpolators

$$N^{(1)}_{\mu}(\vec{p}) = \sum_{\vec{x}} \epsilon_{abc} \left(u_a(\vec{x}) \right)_{\mu} \left(u_b^T(\vec{x}) C \gamma_5 d_c(\vec{x}) \right) e^{i \vec{p} \cdot \vec{x}}$$
$$N^{(2)}_{\mu}(\vec{p}) = \sum_{\vec{x}} \epsilon_{abc} \left(u_a(\vec{x}) \right)_{\mu} \left(u_b^T(\vec{x}) C \gamma_0 \gamma_5 d_c(\vec{x}) \right) e^{i \vec{p} \cdot \vec{x}}$$

 Δ interpolators

$$\Delta_{\mu i}^{(1)}(\vec{p}) = \sum_{\vec{x}} \epsilon_{abc} \left(u_a(\vec{x}) \right)_{\mu} \left(u_b^T(\vec{x}) C \gamma_i u_c(\vec{x}) \right) e^{i \vec{p} \cdot \vec{x}}$$
$$\Delta_{\mu i}^{(2)}(\vec{p}) = \sum_{\vec{x}} \epsilon_{abc} \left(u_a(\vec{x}) \right)_{\mu} \left(u_b^T(\vec{x}) C \gamma_i \gamma_0 u_c(\vec{x}) \right) e^{i \vec{p} \cdot \vec{x}}$$

2-hadron interpolators: $N^{(1,2)}_{\mu}(\vec{p}_N)\pi(\vec{p}_\pi)$

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]

$rac{L}{2\pi} ec{P}_{\mathrm{ref}} \; [N_{\mathrm{dir}} \;]$	$LG(\vec{P})$	$\Lambda(J):\pi(0^-)$	$\Lambda(J): N\left(\frac{1}{2}+\right)$	$\Lambda(J):\Delta(\frac{3}{2}+)$
(0, 0, 0)[1]	O_h^D	$A_{1u}(0, 4, \ldots)$	$G_{1g}\left(\frac{1}{2},\frac{7}{2},\ldots\right)\oplus G_{1u}\left(\frac{1}{2},\frac{7}{2},\ldots\right)$	$H_g\left(rac{3}{2},rac{5}{2},\ldots ight)\oplus H_u\left(rac{3}{2},rac{5}{2},\ldots ight)$
(0, 0, 1)[6]	C^D_{4v}	$A_2(0, 1,)$	$G_1\left(\frac{1}{2},\frac{3}{2},\ldots\right)$	$G_1\left(rac{1}{2},rac{3}{2},\ldots ight)\oplus G_2\left(rac{3}{2},rac{5}{2},\ldots ight)$
(0, 1, 1)[12]	C_{2v}^D	$A_2(0, 1,)$	$G\left(\frac{1}{2},\frac{3}{2},\ldots\right)$	$G\left(\frac{1}{2},\frac{3}{2},\ldots\right)$
(1, 1, 1)[8]	C^D_{3v}	$A_2(0, 1,)$	$G\left(\frac{1}{2},\frac{3}{2},\ldots\right)$	$G\left(\frac{1}{2},\frac{3}{2},\ldots\right)\oplus F_1\left(\frac{3}{2},\frac{5}{2},\ldots\right)\oplus F_2\left(\frac{3}{2},\frac{5}{2},\ldots\right)$

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU $(2) \times Parity$]

 $\Delta(\frac{3}{2}+)$ Partial wave mixing with $J=\frac{1}{2}$ in $G_1,2G$ Irreps.

[Göckler.et.al., 1206.4141]

$$O^{\wedge,r,n}(\vec{P}) = \frac{\dim_{\Lambda}}{\#_{LG(\vec{P})}} \sum_{R \in LG(\vec{P})} \Gamma^{\wedge}_{r,r}(R) U_R O(\vec{P}) U_R^{\dagger}, \quad r \in \{1, \dots, \dim_{\Lambda}\}$$

[Morningstar.et.al., 1303.6816]

Total 1720 Operators.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.

Variational analysis :

$$C(t) v(t, t_0) = \lambda(t, t_0) C(t_0) v(t, t_0)$$

Fit $[\lambda(t, t_0)]$ to single/multi exponential $[t_{min}, t_{max}]$, and ratio fit $R(t, t_0)$ to single exponential for ΔE (Energy shift)

$$R(t,t_0) = \frac{\lambda(t,t_0)}{(C_{\pi}^{\vec{p}_1}(t)C_N^{\vec{p}_2}(t))}$$

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.

 H_g Irrep Spectrum Volume dependence

Blue $N\pi$ states, Red Interacting levels.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.

10

Effective masses in H_a irrep.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.

Eigenvector Overlaps in H_g irrep.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.
- Fit the spectrum to Lüscher formula to extract scattering phase shifts.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.
- Fit the spectrum to Lüscher formula to extract scattering phase shifts.

For Baryons with spin J and partial wave $l,\,-J\leq\mu,\mu'\leq J$

$$\det(M_{Jl\mu,J'l'\mu'} - \delta_{JJ'}\delta_{ll'}\delta_{\mu\mu'}\cot\delta_{Jl}) = 0$$

 δ_{Jl} is the scattering phase shift.

[Göckler.et.al., 1206.4141]

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.
- Fit the spectrum to Lüscher formula to extract scattering phase shifts.

- Construct single hadron & bilocal multi-hadron Interpolators.
- Compute correlation matrices. ["Sequential + Stochastic + Smearing"]
- **Project** onto irreps. [SU(2) \times Parity]
- Extract spectrum and principal eigenvectors using GEVP.
- Fit the spectrum to Lüscher formula to extract scattering phase shifts.

Hadron Spectrum

 $N\pi$ spectrum $m_{\pi} \approx 199$ MeV.

Red, Blue, Black continuous lines: Non-Interacting $N\pi$ states. Dashed lines are $N\pi$ and $N\pi\pi$ thresholds.

Hadron Spectrum

 $M_{\pi} = 137 \mathrm{MeV}$

Srijit Paul spaul I 37@umd.edu

10

Pion Mass Dependence of $g_{\Delta-N\pi}$

Pion Mass Dependence of m_{Δ}

8

- Resonance parameters for $N\pi$ scattering in $I = \frac{3}{2}$ channel for $m_{\pi} = 250, 199, 137$ MeV on 5 ensembles.
- Both of single and multi-hadron interpolators become crucial in the extraction of the spectrum.
- Quark mass dependence studied: Consistent with m_{Δ} linear behaviour with m_{π}^2 near physical pion mass.
- Remarkable agreement with the experimental value of m_{Δ} .

Outlook

- Sets up the stage for the computation of " Δ " transition form factors.

Outlook

- Sets up the stage for the computation of " Δ " transition form factors.

10

Outlook

- Sets up the stage for the computation of " Δ " transition form factors.

10