

STUDYING LATTICE ARTIFACTS in multi-baryon systems

Robert J. Perry University of Barcelona, Spain perryrobertjames@gmail.com

Zohreh Davoudi, William Detmold, Anthony V. Grebe, Marc Illa, William I. Jay, Assumpta Parreño, Phiala E. Shanahan, Michael L. Wagman (NPLQCD)

Why Nuclear Physics using LQCD?

- **Understand** emergence of nuclear complexity from the quarks and gluons.
- Particle content of SM has been observed, but SM cannot explain:
	- Dark matter,
	- Neutrino masses,
	- etc.
- Nuclear isotopes often employed as targets in BSM physics searches: often large source of systematic uncertainty.
	- LQCD has potential to be relevant to a broad set of experimental programs.

- Use LQCD as "virtual lab" to study more exotic systems: hypernuclear physics.
	- Information on YY and YN important for neutron star EoS.

Nuclear Systems are Challenging

- Contraction cost
- Exponentially bad signal-to-noise (StN),
- Small energy gaps

$$
C_{\chi\chi}(t) = |Z_{0\chi}|^2 e^{-tE_0} + |Z_{1\chi}|^2 e^{-tE_1} + \dots
$$

$$
\Delta E = E_1 - E_0 \sim \frac{1}{L^2}
$$

We would like to understand systematics associated with:

- Non-physical quark masses
- Finite volume
- Lattice discretization
- Excited state contamination
- Operator dependence

H-Dibaryon

- Are there other dibaryon bound states?
- Jaffe (1976): Yes Lambda-Lambda
- \cdot S=-2 hexaquark
- Experimentally challenging.
- Lattice can contribute... provided we understand systematics

Challanging analysis!

Green et al strategy:

● Fit to logarithm of ratio (**non-convex**)

$$
R_n(t) = \frac{\tilde{C}_{\Lambda\Lambda}(t)}{C_{\Lambda}^{\vec{p}_1}(t)C_{\Lambda}^{\vec{p}_2}(t)}
$$

 \cdot Exponentially small StN at large times

Different approaches to the same challenge

Asymmetric Correlator

- \vee Relatively cheap to calculate
- ✗ Different operators at source and sink: not gauranteed to be positive-definite
- **X** Effective mass can approach from below

Lanczos*

- ◆ Potential for rigorous two-sided error on energy
- $\boldsymbol{\chi}$ Novel method less known about systematics etc.

*M. Wagman, "Lanczos, the transfer matrix, and the signal-to-noise problem" 2406.20009 [hep-lat]

Variational method

- $\sqrt{}$ Rigorous variational upper bounds
- **X** Expensive to compute matrix of correlators

Direct Fits to Correlation Matrices

- Get the "most" out of correlation matrix
- Expensive to compute matrix of correlators
- ✗ Not gauranteed to bound energies: systematic error
- ✗ Computationally expensive, large parameter space can get stuck in local minimums

$$
H_{\rm QCD} |n\rangle = E_n |n\rangle
$$

HALQCD

- ✔ Physically intuitive: "Nuclear potentials"
- ✗ Requires only elastic scattering states contribute to correlator.

Lattice artifacts in multi-baryon systems

Different approaches to the same challenge

Asymmetric Correlator

- \vee Relatively cheap to calculate
- ✗ Different operators at source and sink: not gauranteed to be positive-definite
- **X** Effective mass can approach from below

Lanczos*

- ◆ Potential for rigorous two-sided error on energy
- $\boldsymbol{\chi}$ Novel method less known about systematics etc.

*M. Wagman, "Lanczos, the transfer matrix, and the signal-to-noise problem" 2406.20009 [hep-lat]

- $\sqrt{}$ Rigorous variational upper bounds
- **X** Expensive to compute matrix of correlators

Direct Fits to Correlation Matrices

- Get the "most" out of correlation matrix
- Expensive to compute matrix of correlators
- Not gauranteed to bound energies: systematic error
- ✗ Computationally expensive, large parameter space can get stuck in local minimums

$$
H_{\rm QCD} |n\rangle = E_n |n\rangle
$$

HALQCD

✔ Physically intuitive: "Nuclear potentials"

"Lanczos for matrix elements",
Paniel Hackett
riday, 12:35

Daniel Hackett
F**riday, 12** Kett **Friday, 12:35**

✗ Requires only elastic scattering states contribute to correlator.

Lattice artifacts in multi-baryon systems

Different approaches to the same challenge

Asymmetric Correlator

- \vee Relatively cheap to calculate
- ✗ Different operators at source and sink: not gauranteed to be positive-definite
- Effective mass can approach from below

Lanczos*

- ◆ Potential for rigorous two-sided error on energy
- $\boldsymbol{\chi}$ Novel method less known about systematics etc.

*M. Wagman, "Lanczos, the transfer matrix, and the signal-to-noise problem" 2406.20009 [hep-lat]

Variational method

- $\sqrt{}$ Rigorous variational upper bounds
- **X** Expensive to compute matrix of correlators

Direct Fits to Correlation Matrices

- Get the "most" out of correlation matrix
- Expensive to compute matrix of correlators
- Not gauranteed to bound energies: systematic error
- ✗ Computationally expensive, large parameter space can get stuck in local minimums

$H_{\text{QCD}}|n\rangle = E_n|n\rangle$

HALQCD

- ✔ Physically intuitive: "Nuclear potentials"
- ✗ Requires only elastic scattering states contribute to correlator.

Lattice artifacts in multi-baryon systems

THE VARIATIONAL METHOD

• (Hermitian) matrix of correlators:

$$
\mathbf{C}(t) = \begin{bmatrix} \frac{\mathbf{C}}{\mathbf{C}} & \mathbf{C} & \mathbf{C} \\ \frac{\mathbf{C}}{\mathbf{C}} & \mathbf{C} & \mathbf{C} \end{bmatrix}
$$

Most recent work: up to 46x46 correlation matrix!

• Solve Generalized Eigenvalue Problem (GEVP):

$$
\mathbf{C}(t)\vec{v}_{n}(t,t_{0}) = \lambda_{n}(t,t_{0})\mathbf{C}(t_{0})\vec{v}_{n}(t,t_{0})
$$

● Cauchy Interlacing theorem: GEVP Eigenvalues provide **rigorous (stochastic) variational upper bounds on energy levels.** Provides **lower bound on number of states**

Lattice artifacts in multi-baryon systems

CURRENT OPERATOR SET

Local hexaquark operators

• Six Gaussian smeared quarks at a point

Dibaryon Operators

- Two spatially-separated plane-wave baryons with relative momenta
- Relative momentum: up to four units \rightarrow 5 operators

Quasi-local Operators

- Two exponentially localized baryons
- NN -EFT motivated deuteron-like structure

CURRENT OPERATOR SET

Local hexaquark operators

• Six Gaussian smeared quarks at a point

Dibaryon Operators

- Two spatially-separated plane-wave baryons with relative momenta
- Relative momentum: up to four units \rightarrow 5 operators

Quasi-local Operators

- Two exponentially localized baryons
- NN -EFT motivated deuteron-like structure

Lattice artifacts in multi-baryon systems

 (i,j,k)

Lessons learnt from NN @ 800 MeV

Phys.Rev.D 107 (2023) 9, 094508

Interpolating operator dependence Removing interpolating operators leads to "missing energy levels" for states dominantly overlapping with omitted operators Variational upper bounds obtained using different interpolating operator sets are consistent 0.1 0.03 \Box NPLOCD 13 [15] ∇ [D, H] 0.02 \bigcirc CalLat 17 [25] \diamond so $\Delta E_{\rm n}^{(2,0,T_1^+, \mathbb{S})}$ $\Delta E_0^{(2,0,T_1^+, \mathbb{S})}$ 0.10 \triangle NPLQCD 17 [18] 0.01 o s 0.00 -0.01 0.05 Ŧ -0.02 Ground-state energy estimates using
different interpolating-operator sets 0.00 show large discrepancies ão $\tilde{\mathbb{S}}_{\mathbb{O}}$ $\tilde{\mathbb{S}}_{\mathbb{O}}$ $\tilde{\mathbb{S}}_{\mathbb{O}}$ $\tilde{\mathbb{S}}_{\mathbb{O}}$ So So So Sn M. Wagman, Lattice 2022 Interpolating-operator set

Moral: Should be careful not to over-interpret results. Results consistent if viewed as variational bounds.

Lattice artifacts in multi-baryon systems

DETAILS OF ENSEMBLES USED

In this talk: Data at two lattice spacings In the coming months: Add data at smaller physical volume **Goal**: Study finite volume and lattice artifacts for S=-2 systems at *mπ* = 806 MeV. Use knowledge to **inform near-physical point calculations**.

DETAILS OF ENSEMBLES USED

In this talk: Data at two lattice spacings In the coming months: Add data at smaller physical volume **Goal**: Study finite volume and lattice artifacts for S=-2 systems at *mπ* = 806 MeV. Use knowledge to **inform near-physical point calculations**.

DETAILS OF ENSEMBLES USED

In this talk: Data at two lattice spacings In the coming months: Add data at smaller physical volume **Goal**: Study finite volume and lattice artifacts for S=-2 systems at *mπ* = 806 MeV. Use knowledge to **inform near-physical point**

calculations.

$\overline{\mathrm{SU}(3)}$ SYMMETRY

• SU(3) flavor symmetric point: octet baryons are mass-degenerate

Lattice artifacts in multi-baryon systems

M. Illa, 2021 "Approaching nuclear interactions with lattice QCD" 10 / $16\,$

EFFECTIVE MASS PLOTS $(J=1)$

* Fit to 1B and 2B correlation functions. Then compute difference

EFFECTIVE MASS PLOTS $(J=1)$

EFFECTIVE MASS PLOTS $(J=1)$

Lattice artifacts in multi-baryon systems

EFFECTIVE MASS PLOTS $(J=0)$

EFFECTIVE MASS PLOTS $(J=0)$

EFFECTIVE MASS PLOTS $(J=0)$

Lattice artifacts in multi-baryon systems

SUMMARY PLOT

SUMMARY PLOT

Lattice artifacts in multi-baryon systems

CONCLUSIONS

- LQCD has potential to be relevant to a broad set of experimental programs, **provided** we understand systematic errors.
- The variational method is **one** approach to study the (finite volume) energy eigenvalues of the QCD Hamiltonian.
- Computed variational bounds for all $SU(3)$ irreps.
- **If viewed as bounds**, results from two lattice spacings **are consistent**.
- **If bounds have saturated**, evidence for lattice artifacts in flavor singlet (Hdibaryon).
- To make a determination, we think more evidence is required:
	- Explore the impact of other operators on variational bounds
	- Compute (Lanczos, brute force, something else) correlation function to larger Euclidean times.
- With data at two physical volumes, can study interplay of lattice artifacts and finite volume effects.

Lattice artifacts in multi-baryon systems 15 / 16

HOWEVER, CHALLENGING DATA ANALYSIS...

Analysis strategy (Green et al):

1) Fits to logarithm of ratio (**non-convex**)

$$
R_n(t) = \frac{\tilde{C}_{\Lambda\Lambda}(t)}{C_{\Lambda}^{\vec{p}_1}(t)C_{\Lambda}^{\vec{p}_2}(t)}
$$

2) Large statistical uncertainties in region where single-state dominates nucleon correlator.

Lattice artifacts in multi-baryon systems