

理化学研究所 数理創造プログラム RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program LATTICE 2024 Liverpool

N- $c\bar{c}$ interaction from lattice QCD

Yan Lyu iTHEMS, RIKEN Jul. 31, 2024

In Collaboration with T. Doi, T. Hatsuda, and T. Sugiura

$N-c\bar{c}$ interaction and hadron masses

> The proton mass

M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Phys. Lett. B 78 (1978) X.-D. Ji, Phys. Rev. Lett. 74 (1995)

- Accounts for almost entire mass of visible Universe
- Studying its gluonic structure is one of the major goals of GlueX, and future EiC, EicC
- The $N-J/\psi$ forward scattering amplitude containing $\langle N | G_{\mu\nu} G^{\mu\nu} | N \rangle$, is related to its trace anomaly contribution M. E. Luke, A. V. Manohar, M. J. Savage, Phys. Lett. B 288 (1992)

- The J/ψ mass modification in nuclear medium A. Hayashigaki, Prog. Theor. Phys. 101 (1999), T. Hatsuda, and S. H. Lee, Phys. Rev. C 46 R34 (1992)
 - To be measured via e^+e^- decay at J-PARC
 - Closely related to the charm quark condensate
 - Proportional to $N-J/\psi$ scattering length

$$\delta m_{J/\psi} \simeq -\frac{2\pi (m_N + m_{J/\psi})}{m_N m_{J/\psi}} a_{J/\psi}^{\text{spin-av}} \rho_{\text{nm}}$$

N- $c\bar{c}$ interaction and multi-quark/hadron state

> The pentaquark states P_c

R. Aaij, et al. [LHCb Coll.], Phys. Rev. Lett. 115 072001 (2015); Phys. Rev. Lett. 122 (22) 222001 (2019)

- Appear as peaks in the $p J/\psi$ spectrum
- Lots of discussions on their quantum number, production/decay properties...
- A full coupled-channel study needs $N-c\bar{c}$ interaction

- Predicted charmonium-nucleus bound states $(A-c\overline{c})$
 - The existence of $A c\bar{c}$ is in agreement among theories
 - Predicted binding energies are disparate
 - A reliable prediction calls for accurate $N-c\bar{c}$ interaction

S. Brodsky, I. Schmidt, and G. Teramond, Phys. Rev. Lett. 64 (1990) S. R. Beane, *et. al.* [NPLQCD Coll.], Phys. Rev. D 91,114503 (2015) G. Krein, A. W. Thomas, and K. Tsushima, Prog. Part. Nucl. Phys. 100 (2018)

$N-c\bar{c}$ interaction

- > Theoretically, a characteristic long-range behavior is expected
 - Multiple-gluon exchange is believed to manifest as two-pion exchange

J. Castella and G. Krein, Phys. Rev. D **98**, 014029 (2018) H. Fujii and D. Kharzeev, Phys. Rev. D **60**, 114039 (1999) G. Bhanot and M. E. Peskin, Nucl. Phys. B **156**, 391(1979)

- > Experientially, large uncertainties remain
 - Vector-meson dominance: $a_{NJ/\psi} \sim O(1-10) \times 10^{-3}$ fm

- This talk is going to present a first realistic lattice study on the lowenergy $N-c\overline{c}$ interaction
 - Examine the expected behavior of the long-range potential
 - Study near-threshold scattering properties

HAL QCD method

Nambu-Bethe-Salpeter (NBS) amplitude

 $\psi^{k}(\boldsymbol{r},t) = \langle 0|N(\boldsymbol{r},t)O_{c\bar{c}}(\boldsymbol{0},t)|N(\boldsymbol{k}),c\bar{c}(-\boldsymbol{k});E\rangle$

- Asymptotic region: $\psi^k(r) \simeq A \frac{\sin(kr l\pi/2 + \delta(k))}{kr}$
- Interacting region: define potential

$$(
abla^2+k^2)\psi^k(m{r})=2\mu\int dm{r}'m{U}(m{r},m{r}')\psi^k(m{r}')$$

$$\left(\frac{1}{8\mu}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu}\right)R(\boldsymbol{r}, t) = \int d\boldsymbol{r}' \boldsymbol{U}(\boldsymbol{r}, \boldsymbol{r}')R(\boldsymbol{r}', t)$$

• Derivative expansion: $U(\mathbf{r}, \mathbf{r}') = \sum V_i(\mathbf{r}) \nabla^i \delta(\mathbf{r} - \mathbf{r}')$

$$V(r) = R(\boldsymbol{r}, t)^{-1} \left(\frac{1}{8\mu} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu} \right) R(\boldsymbol{r}, t)$$

N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)
 N. Ishii, *et al.* [HAL QCD Coll.], Phys. Lett. B 712, 437 (2012)

Asymptotic region

Interacting

region

Lattice setup

- \succ (2+1)-flavor configurations
 - Iwasaki gauge action
 - O(a)-improved Wilson quark action for *uds* quark
 - Relativistic heavy quark action for *c* quark
 - K.-I. Ishikawa, et al. (PACS Collaboration), Proc. Sci., LATTICE2015 075 (2016)
 - Y. Namekawa et al. (PACS Collaboration), Proc. Sci., LATTICE2016 125 (2017)

Fugaku supercomputer (440 PFlops)

$L^3 \times T$	<i>a</i> [fm]	<i>La</i> [fm]	m_{π} [MeV]	m_K [MeV]
$96^3 \times 96$	0.0846	8.1	146	525

Hadron mass

Energy levels

- Relevant energy levels
- The inelastic $\Lambda_c \overline{D}$ is around 120 MeV above, and is suppressed at large t
- The transition between NJ/ψ to $N\eta_c$ is suppressed by heavy quark spin symmetry, and is further suppressed kinematically for the highest spin state
- Decay through *cc̄* annihilation is OZI suppressed

As we focus on near-threshold scatterings, single-channel calculations are expected to be sufficient

Potential

S-wave $N - c\bar{c}$ potential at $t/a = 14 \pm 1$ ($t \approx 1.2$ fm)

- The attractive potentials weakly depend on $t \rightarrow$ small systematic errors
- Attractive core, partially because of no Pauli exclusion, similar as $N\phi$, $N\Omega$
- The long-range potentials exhibit similar decreasing behavior→a common mechanism operates at long distances
- For later use, a pure phenomenological multiple Gaussian can describe the lattice data with $\chi^2/dof = 0.5-1.5$ (red bands)

Long-range potential

- > The $N-Q\overline{Q}$ potential is believed to be induced by multiple gluon exchange
 - A QCD analogy of the van der Waals interaction between atoms/molecules
 - Photon can propagate over long distances, leading to $V(r) \sim -\frac{\alpha}{r^7}$ (the dashed line)
 - Gluon can NOT propagate over long distances, and color-neutral hadrons involves especially the lightest two-pion state, leading to $V(r) \sim -\alpha \frac{e^{-2m\pi r}}{r^2}$ (bands)

J. Castella and G. Krein, Phys. Rev. D **98**, 014029 (2018);H. Fujii and D. Kharzeev, Phys. Rev. D **60**, 114039 (1999) G. Bhanot and M. E. Peskin, Nucl. Phys. B **156**, 391(1979)

• The long-range $N-c\bar{c}$ potential is consistent with the two-pion exchange interaction

Physical observables

Scattering phase shifts

$$k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2$$

channel	<i>a</i> ₀ [fm]	r _{eff} [fm]
$NJ/\psi(^{4}S_{3/2})$	$0.30(2)\binom{+0}{-2}$	$3.25(12)\binom{+6}{-9}$
$NJ/\psi(^{2}S_{1/2})$	$0.38(4) \begin{pmatrix} +0\\ -3 \end{pmatrix}$	$2.66(21) \begin{pmatrix} +0 \\ -10 \end{pmatrix}$
$N\eta_c(^2S_{1/2})$	$0.21(2)\binom{+0}{-1}$	$3.65(20) \begin{pmatrix} +0\\ -6 \end{pmatrix}$

A direct phenomenological application

• The J/ψ mass modification in nuclear medium is related to the spin-averaged scattering length of $N-J/\psi$ scattering A. Hayashigaki, Prog. Theor. Phys. 101 (1999)

$$\delta m_{J/\psi} \simeq -\frac{2\pi (m_N + m_{J/\psi})}{m_N m_{J/\psi}} a_{J/\psi}^{\text{spin-av}} \rho_{\text{nm}} = -19(3) \text{ MeV}$$

Estimations for other systematic errors

- With a single set of configurations, systematic errors associated with (L, a, m_{π}) can only be estimated qualitatively
- Finite volume
 - From the potential, V(r > 2 fm) = 0, while our lattice size L = 8.1 fm
 - Another estimation from two-pion exchange, $\exp(-2m_{\pi}L/2) \simeq 0.3\%$
- Finite cutoff
 - Non-perturbative O(a)-improvement for light quarks, $O\left(\left(a\Lambda_{\text{QCD}}\right)^2\right) \sim O(1)\%$
 - The remaining cutoff error for charm quark, $O(\alpha_s^2 a \Lambda_{QCD}) \sim O(1)\%$
 - Even completely cutoff V(r) at $r < 0.1 \text{ fm} \rightarrow 2\%$
- Slightly unphysical m_{π}
 - Estimated to be O(1)% by comparing lattice results obtain at $m_{\pi} = 700$ MeV

T. Sugiura, Y. Ikeda, and N. Ishii, PoS LATTICE2018 (2019) 093

Comparison

> The spin averaged $N-J/\psi$ scattering length

a [fm]	Year	Author	Method
0.046(5)	2016	Gryniuk-Gryniuk	Photoproduction (VMD)
$3 \sim 25 \cdot 10^{-3}$	2021	Pentchev-Strakovsky	Photoproduction (VMD)
0(1)	2023	JPAC	Photoproduction (unitarity)
0.05	1992	Kaidalov-Volkovitsky	QCD multipole expansion
0.24	1997	Brodsky-Miller	QCD multipole expansion
≥0.37	2005	Sibirtsev-Voloshin	QCD multipole expansion
0.10(2)	1999	Hayashigaki	QCD sum rule
$0.2 \sim 3 \cdot 10^{-3}$	2020	Du-Baru-Guo et. al.	Coupled channel
0.71(48)	2006	Yokokawa-Sasaki etal	LQCD (quenched)
0.1(7)	2008	Liu-Lin-Orginos	LQCD (full, extrapolate to phys. Pt.)
0.33(5)	2010	Kawanai-Sasaki	LQCD (quenched)
0.47(1)	2019	Sugiura-Ikeda-Ishii	LQCD ($m_{\pi} = 700$)
$\simeq 0$	2019	Skerbis-Prelovsek	LQCD ($m_{\pi} = 266$)
0.33(4)	2024	The present work	LQCD ($m_{\pi} = 146$)

Summary & Outlook

- Summary: we present a first realistic study on low-energy $N-c\bar{c}$ interaction based on (2+1)-flavor LQCD w/ nearly physical light quark masses and physical charm quark mass
 - The potential is found to be attractive at all distances
 - Long-range potential \rightarrow consistent w/ TPE
 - Detailed analysis for near-threshold scattering properties

> Outlook:

- The physical point simulations
- The long-range potential for other hadron pairs

Thanks for your attention

Backup

2024/7/31

Y. LYU N-charmonium interaction from LQCD

FV analysis $N\eta_c \ 1/2$

