Lattice 2024 - Liverpool

July 30, 2024

Alessandro De Santis

Inclusive semi-leptonic $D_s \mapsto X\ell\nu$ decay from lattice QCD

Part 1 : theory and method

Part 2 : results, by Christiane Groß

University of Bonn

Marco Garofalo Christiane Groß Bartosz Kostrzewa Carsten Urbach

University of Swansea Antonio Smecca

University of Torino

Paolo Gambino Marco Panero

University of Roma Tor Vergata

Alessandro De Santis Antonio Evangelista Roberto Frezzotti Francesca Margari Nazario Tantalo

University of Roma Tre

Giuseppe Gagliardi Vittorio Lubicz Aurora Melis Francesco Sanfilippo Silvano Simula

Motivations

Exploratory study of the $H \mapsto X\ell\nu$ decay done in [P. Gambino et al. \(2022\),](https://arxiv.org/abs/2203.11762) but

- \triangleright Unphysical ensemble
- \triangleright $L \mapsto \infty$ and $a \mapsto 0$ limits missing
- \triangleright Comparison only with OPE

Motivations

Exploratory study of the $H \mapsto X\ell\nu$ decay done in [P. Gambino et al. \(2022\),](https://arxiv.org/abs/2203.11762) but

- \triangleright Unphysical ensemble
- \triangleright $L \mapsto \infty$ and $a \mapsto 0$ limits missing
- \triangleright Comparison only with OPE

The experimental precision of $D_s \mapsto X \ell \nu$ data, achievable from the lattice, offers the opportunity to do a complete phenomenologically relevant calculation and at the same time to validate the method

Theoretical background

Inclusive semi-leptonic $D_s \mapsto X \ell \nu$ decay

[[P. Gambino and S. Hashimoto \(2020\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.032001) [S. Hashimoto \(2017\)](https://arxiv.org/pdf/1703.01881)]

- \triangleright $\;$ Incoming D_s meson at rest, $p^2 = m_{D_s}^2$
- \triangleright Outgoing X hadron, $p_X = (q_0, \mathbf{q})$

$$
\triangleright \hat{J}^{\mu}_{gf}(x) = i\bar{g}(x)\gamma^{\mu}(\mathbb{1}-\gamma_5)f(x)
$$

$$
\Gamma = G_{\rm F}^2 \bigg(|V_{cd}|^2 \Gamma_{cd} + |V_{cs}|^2 \Gamma_{cs} + |V_{us}|^2 \Gamma_{su} \bigg)
$$

Each contribution is given by

$$
\Gamma_{fg}=\int\frac{\mathrm{d}^3p_\nu}{(2\pi)^3 2E_\nu}\frac{\mathrm{d}^3p_\ell}{(2\pi)^3 2E_\ell}L_{\mu\nu}(p_\ell,p_\nu)\boldsymbol{H}^{\mu\nu}_{fg}(\boldsymbol{p},\boldsymbol{p_X})
$$

with $L_{\mu\nu}$ standard leptonic tensor and the fully non-perturbative hadronic tensor

$$
\boldsymbol{H}^{\mu\nu}_{fg}(\boldsymbol{p},\boldsymbol{p_X})=\frac{(2\pi)^4}{2m_{D_s}}\bra{D_s}\hat{J}^{\mu}_{fg}(0)\delta^4(\mathbb{P}-p_X)\hat{J}^{\nu\dagger}_{fg}(0)\ket{D_s}
$$

After a lengthy (but straightforward) derivation ...

$$
24\pi^3 \frac{d\Gamma_{fg}}{dq^2} = \sum_{n=0}^2 |\mathbf{q}|^{3-n} \int_{q_0^{\min}}^{q_0^{\max}} dq_0 (q_0^{\max} - q_0)^n Z_n, \qquad \boxed{Z_n =
$$

$$
24\pi^3 \frac{d\Gamma_{fg}}{dq^2} = \sum_{n=0}^2 |\mathbf{q}|^{3-n} \int_{q_0^{\min}}^{q_0^{\max}} \mathrm{d}q_0 (q_0^{\max} - q_0)^n Z_n, \qquad \boxed{Z_n = \text{linear combinations of } H_{fg}^{\mu\nu}(q_0, \mathbf{q}^2)}
$$

To treat numerically the integral we introduce a regularized version of the θ -function

$$
24\pi^3 \frac{d\Gamma_{fg}}{dq^2} = \lim_{\sigma \to 0} \sum_{n=0}^2 |\mathbf{q}|^{3-n} \int_{q_0^{\min}}^{\infty} \mathrm{d}q_0 (q_0^{\max} - q_0)^n \theta_{\sigma} (q_0^{\max} - q_0) Z_n
$$

$$
24\pi^3\frac{\mathrm{d}\Gamma_{fg}}{\mathrm{d}\mathbf{q}^2} = \sum_{n=0}^2 |\mathbf{q}|^{3-n} \int_{q_0^{\min}}^{q_0^{\max}} \mathrm{d}q_0 (q_0^{\max} - q_0)^n Z_n, \qquad \boxed{Z_n = \text{linear combinations of } H_{fg}^{\mu\nu}(q_0, \mathbf{q}^2)}
$$

To treat numerically the integral we introduce a regularized version of the θ -function

$$
24\pi^3 \frac{d\Gamma_{fg}}{dq^2} = \lim_{\sigma \to 0} \sum_{n=0}^2 |\mathbf{q}|^{3-n} \int_{q_0^{\min}}^{\infty} \mathrm{d}q_0 (q_0^{\max} - q_0)^n \theta_{\sigma} (q_0^{\max} - q_0) Z_n
$$

 $\lim_{\sigma\to 0} \theta_{\sigma}(x) = \theta(x)$

The final hadron phase-space

$$
q_0 \in \left[\sqrt{m_{fg}^2+\mathbf{q}^2}, m_{D_s}-|\mathbf{q}| \right] \qquad m_{fg}^2 \text{ lightest mass in the spectrum}
$$

The final hadron phase-space

$$
q_0 \in \left[\sqrt{m_{fg}^2 + {\bf q}^2}, m_{D_s} - |{\bf q}|\right] \qquad m_{fg}^2 \text{ lightest mass in the spectrum}
$$

[[A. Evangelista et. al \(2023\)](https://arxiv.org/abs/2403.05404)]

$$
\Delta \rho_{\sigma} = \int_0^{\infty} \mathrm{d}q_0 x^n \left[\theta_{\sigma}(x) - \theta(x) \right] \rho(q_0)
$$

$$
x = q_0^{\max} - q_0
$$

[[A. Evangelista et. al \(2023\)](https://arxiv.org/abs/2403.05404)]

$$
\Delta \rho_{\sigma} = \int_0^{\infty} \mathrm{d}q_0 x^n \left[\theta_{\sigma}(x) - \theta(x) \right] \rho(q_0)
$$

$$
x = q_0^{\max} - q_0
$$

$$
\triangleright n = 0, 1 \Delta \rho_{\sigma} = \mathcal{O}(\sigma^2) + \text{ even powers} \quad (Z_{0,1})
$$

$$
\triangleright n = 2 \quad \Delta \rho_{\sigma} = \mathcal{O}(\sigma^4) + \text{ even powers} \quad (Z_2)
$$

[[A. Evangelista et. al \(2023\)](https://arxiv.org/abs/2403.05404)]

$$
\Delta \rho_{\sigma} = \int_0^{\infty} \mathrm{d}q_0 x^n \left[\theta_{\sigma}(x) - \theta(x) \right] \rho(q_0)
$$

$$
x = q_0^{\max} - q_0
$$

$$
\triangleright n = 0, 1 \Delta \rho_{\sigma} = \mathcal{O}(\sigma^2) + \text{even powers} \quad (Z_{0,1})
$$

$$
\triangleright n = 2 \quad \Delta \rho_{\sigma} = \mathcal{O}(\sigma^4) + \text{even powers} \quad (Z_2)
$$

$$
\triangleright \text{ If } \rho(q_0) = Z \cdot \delta(q_0 - q_0^{\max}) + \cdots
$$

$$
\triangleright n = 0 \quad \Delta \rho_\sigma = \frac{1}{2} Z \text{ !?}
$$

$$
\triangleright n > 0 \quad \Delta \rho_\sigma = 0
$$

[[A. Evangelista et. al \(2023\)](https://arxiv.org/abs/2403.05404)]

$$
\Delta \rho_{\sigma} = \int_0^{\infty} \mathrm{d}q_0 x^n \left[\theta_{\sigma}(x) - \theta(x) \right] \rho(q_0)
$$

$$
x = q_0^{\text{max}} - q_0
$$

$$
\triangleright n = 0, 1 \Delta \rho_{\sigma} = \mathcal{O}(\sigma^2) + \text{ even powers} \quad (Z_{0,1})
$$

$$
\triangleright n = 2 \quad \Delta \rho_{\sigma} = \mathcal{O}(\sigma^4) + \text{ even powers} \quad (Z_2)
$$

$$
\triangleright \text{ If } \rho(q_0) = Z \cdot \delta(q_0 - q_0^{\max}) + \cdots
$$

$$
\triangleright n = 0 \quad \Delta \rho_\sigma = \frac{1}{2} Z \text{ !?}
$$

$$
\triangleright n > 0 \quad \Delta \rho_\sigma = 0
$$

! Decay rate is not vanishing at \mathbf{q}_{\max}^2 ? Experimental prescription may differ

Γ_{fq} from lattice QCD

We need the hadronic tensor which is the spectral density of the correlation function

$$
M_{fg}^{\mu\nu}(t,\mathbf{q}^2) = \int_0^\infty \mathrm{d}q_0 \, H_{fg}^{\mu\nu}(q_0,\mathbf{q}^2) e^{-q_0 t}
$$

Γ_{fq} from lattice QCD

We need the hadronic tensor which is the spectral density of the correlation function

$$
M_{fg}^{\mu\nu}(t,\mathbf{q}^2) = \int_0^\infty \mathrm{d}q_0 \, H_{fg}^{\mu\nu}(q_0,\mathbf{q}^2) e^{-q_0 t}
$$

that in practice is obtained by

$$
M_{fg}^{\mu\nu}(t_2 - t_1, \mathbf{q}^2) = \lim_{\substack{t_{\text{snk}} \mapsto +\infty \\ t_{\text{src}} \mapsto -\infty}} \frac{C_{4\text{pt}}^{\mu\nu}(t_{\text{snk}}, t_2, t_1, t_{\text{src}}; \mathbf{q})}{C_{2\text{pt}}(t_{\text{snk}} - t_2)C_{2\text{pt}}(t_1 - t_{\text{src}})}
$$

 $\triangleright t = t_2 - t_1 = a, 2a, \cdots$ Euclidean time

$$
\triangleright \hspace{0.1cm} t_{2}-t_{\rm snk}, \hspace{0.1cm} t_{\rm src}-t_{1} \gg 0 \hspace{0.1cm} \textsf{checked}
$$

Going from

$$
M_{fg}^{\mu\nu}(t,\mathbf{q}) = \int_0^\infty \mathrm{d}q_0 H_{fg}^{\mu\nu}(q_0,\mathbf{q}^2) e^{-q_0 t}
$$

to

$$
\int_{q_0^{\rm min}}^{\infty} {\rm d}q_0 (q_0^{\rm max}-q_0)^n \theta_\sigma(q_0^{\rm max}-q_0) H^{\mu\nu}_{fg}(q_0,{\bf q}^2)
$$

implies solving a numerically ill-conditioned (but mathematically well-posed) inverse Laplace transform

 $\triangleright t = a, 2a, 3a, \dots < \infty$, scarce information

 \triangleright signal-to-noise ratio of $M_{fg}^{\mu\nu}(t,\mathbf{q})$ deteriorates exponentially

One way out: HLT (R. Kellermann's talk for another approach)

One way out: HLT (R. Kellermann's talk for another approach)

Extraction of spectral densities from lattice correlators

Martin Hansen,¹ Alessandro Lupo,² and Nazario Tantalo³ ¹INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
²University of Pome Tor Vergata, Via della Pierras Scientifica 1, I-00133 Pome, l 2 University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy $\frac{3}{2}$ University of Rome Tor Vergata and INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy

M any applications by now calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and

F. Margari's poster, D. Stewart's talk allows for choosing a smearing function at (222) R-ratio [Phys.Rev.Lett. 130 \(2023\) 24, 241901](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.241901)

the and the associated uncertainties of the associated uncertainties. The same smaller is can be used uncertain
[A. Evangelista et al. \(2023\),](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.074513) [Phys.Rev.Lett. 132 \(2024\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261901) Hadronic τ decay G. Gagliardi's talk

[P. Gambino et al. \(2022\)](https://link.springer.com/article/10.1007/JHEP07(2022)083) Heavy $H \mapsto X \ell \nu$ inclusive decay

Spectroscopy at non-zero temperature 30 (2023) 24, 241901 **A. Smecca's talk Meson spectroscopy**

 t_{rel} befined can (2024) [Ed. Bennet et al. \(2024\)](https://arxiv.org/abs/2405.01388) N. Forzano's talk

analysis of the infinite-volume $\frac{1}{k}$ Exclusive scattering amplitudes from lattice QCD studied in a consistent way. While the method is described by using the language of lattice simulations, in [A. Patella & N. Tantalo \(2024\)](https://arxiv.org/abs/2407.02069) α inclusive decay and can profit be used to complete α . Patella's talk

Many others!

In general we want to extract $\rho_\sigma=\int\mathrm{d}\omega\,K_\sigma(\omega)\rho(\omega)$ from $C(t)=\int_0^\infty\mathrm{d}\omega\,e^{-\omega t}\rho(\omega)$

 \triangleright A linear estimator for the solution can be written by approximating the target smearing (Schwartz) kernel

$$
\rho_{\sigma} = \sum_{\tau=1}^{T} g_{\tau} C(a\tau)
$$

$$
K_{\sigma,T}^{\text{approx}} = \sum_{\tau=1}^{T} g_{\tau}(T) e^{-a\omega\tau}
$$

 \triangleright The estimator is model independent and unbiased in the limits $T \mapsto \infty$ and vanishing statistical errors

 $\lim_{T \to \infty} K_{\sigma,T}^{\text{approx}} = K_{\sigma}$

In general we want to extract $\rho_\sigma=\int\mathrm{d}\omega\,K_\sigma(\omega)\rho(\omega)$ from $C(t)=\int_0^\infty\mathrm{d}\omega\,e^{-\omega t}\rho(\omega)$

$$
\triangleright
$$
 A linear estimator for the solution can be written by **approximating the target smearing (Schwartz) kernel**

$$
\rho_{\sigma} = \sum_{\tau=1}^{T} g_{\tau} C(a\tau)
$$

$$
K^{\text{approx}}_{\sigma,T} = \sum_{\tau=1}^{T} g_{\tau}(T) e^{-a\omega\tau}
$$

 \triangleright The estimator is model independent and unbiased in the limits $T \mapsto \infty$ and vanishing statistical errors

 $\lim_{T \to \infty} K_{\sigma,T}^{\text{approx}} = K_{\sigma}$

For $T < \infty$ one needs to estimate the residual **systematic** uncertainty due to the kernel approximation in addition to statistical error

 \triangleright The coefficients g are calculated by minimizing

$$
W[\lambda, \mathbf{g}] = (1 - \lambda) \frac{A[\mathbf{g}]}{A[\mathbf{0}]} + \lambda B[\mathbf{g}]
$$

 \triangleright Suppression of the statistical error

$$
B[\boldsymbol{g}] = \boldsymbol{g}^T \cdot \hat{\text{COV}} \big[C(t)\big] \cdot \boldsymbol{g} \equiv (\delta \rho)^2
$$

 \triangleright Accuracy of the approximated kernel

$$
A[\mathbf{g}] = \int_{E_0}^{\infty} d\omega \left\{ \sum_{\tau=1}^{T} g_{\tau} e^{-a\omega\tau} - K_{\sigma}^{\text{target}} \right\}^2 \qquad E_0 \sim 0.9 \cdot q_0^{\text{min}}
$$

Stability analysis to tune λ

pull variable to assess systematic over statical error

$$
\rho_{\star}: \quad \frac{A[g]}{A[0]B[g]} = 10^3 \quad \text{plateaux}
$$
\n
$$
\rho_{\star\star}: \quad \frac{A[g]}{A[0]B[g]} = 10^2 \quad \text{systematic}
$$

$$
PHLT = \frac{\rho_{\star} - \rho_{\star \star}}{\sqrt{\delta \rho_{\star}^2 + \delta \rho_{\star \star}^2}}
$$

$$
\Deltasyst = |\rho_{\star} - \rho_{\star \star}| \operatorname{erf} \left(\frac{PHLT}{\sqrt{2}} \right)
$$

 \star (Z_1 and Z_2 in backup)

$\mathcal{O}(3000)$ stability analysis in one plot

Distribution of the pull variable $P^{\rm HLT}$ across all the stability analysis

C80 requires more statistics

Results ad fixed ensemble and σ

Results ad fixed ensemble and σ

Γcd is Cabibbo suppressed

 \triangleright The HLT method offers a solid way-out to the challenging computation of inclusive decay rates, but that is not enough to do physics ...

 \triangleright The HLT method offers a solid way-out to the challenging computation of inclusive decay rates, but that is not enough to do physics ...

Netx-to-do list

- \triangleright Finite Size Effects
- \triangleright Continuum Limit
- $\triangleright \sigma \mapsto 0$ extrapolation
- \triangleright Integration over ${\bf q}^2$
- \triangleright Comparison with experiments

 \triangleright The HLT method offers a solid way-out to the challenging computation of inclusive decay rates, but that is not enough to do physics ...

Netx-to-do list

- . Finite Size Effects
- \triangleright Continuum Limit
- $\triangleright \sigma \mapsto 0$ extrapolation
- \triangleright Integration over ${\bf q}^2$
- \triangleright Comparison with experiments

Christiane Groß's talk right after me

 \triangleright The HLT method offers a solid way-out to the challenging computation of inclusive decay rates, but that is not enough to do physics ...

Netx-to-do list

- . Finite Size Effects
- \triangleright Continuum Limit
- $\triangleright \sigma \mapsto 0$ extrapolation
- \triangleright Integration over ${\bf q}^2$
- \triangleright Comparison with experiments

Christiane Groß's talk right after me

Thank you for the attention and don't run away!!!

Backup

Definition of Z_n

$$
Z_0 \equiv Y_2 + Y_3 - 2Y_4 \qquad \qquad Z_1 \equiv 2(Y_3 - 2Y_1 - Y_4) \qquad \qquad Z_2 \equiv Y_3 - 2Y_1
$$

Form factors decomposition of the hadronic tensor

$$
m_{D_s}^3 H^{\mu\nu}(p, p_x) = g^{\mu\nu} m_{D_s}^2 h_1 + p^{\mu} p^{\nu} h_2 + (p - p_X)^{\mu} (p - p_X)^{\nu} h_3
$$

+
$$
[p^{\mu}(p - p_X)^{\nu} + (p - p_X)^{\mu} p^{\nu}] h_4 - i \varepsilon^{\mu\nu\alpha\beta} p_\alpha (p - p_X)_{\beta} h_5
$$

$$
Y_1 = -m_{Ds} \sum_{ij} \hat{n}^i \hat{n}^j H^{ij} = h_1
$$

\n
$$
Y_2 = m_{Ds} H^{00} = h_1 + h_2 + \left(1 - \frac{q_0}{m_{Ds}}\right)^2 h_3 + 2\left(1 - \frac{q_0}{m_{Ds}}\right) h_4
$$

\n
$$
Y_3 = m_{Ds} \sum_{ij} \hat{q}^i \hat{q}^j H^{ij} = -h_1 m_{Ds}^2 + |\mathbf{q}|^2 h_3
$$

\n
$$
\hat{n}^2 = 1
$$

\n
$$
\hat{n} \cdot \mathbf{q} = 0
$$

\n
$$
Y_4 = -m_{Ds} \sum_i \hat{q}^i H^{0i} = \left(1 - \frac{q_0}{m_{Ds}}\right) |\mathbf{q}| h_3 + |\mathbf{q}| h_4
$$

\n
$$
Y_5 = \frac{im_{Ds}}{2} \sum_{ijk} \varepsilon^{ijk} \hat{q}^k H^{ij} = |\mathbf{q}| h_5
$$

Production line

This is repeated for:

- > 2 channels, third coming
- \triangleright Z_0 , Z_1 and Z_2
- \triangleright 2 smearing kernels
- \triangleright $\mathcal{O}(10)$ vales of σ
- \triangleright 10 values of ${\bf q}^2$
- \triangleright for each ensemble

ETMC ensembles all close to physical point

Final results

Spline interpolation $+$ trapezoid integration

$\sigma \mapsto 0$ extrapolation

$$
\triangleright Z_0 : \sigma^2 + \text{even powers}
$$

$$
\triangleright Z_1 : \sigma^2 + \text{even powers}
$$

$$
\triangleright Z_2 : \sigma^4 + \text{even powers}
$$

Continuum extrapolation

 $fg=cs, Z_0, q^2=0.035 \text{ [GeV]}^2, \sigma = 436 \text{ [MeV]},$

$fg=cs, Z_1, q^2=0.314 \text{ [GeV]}^2, \sigma = 436 \text{ [MeV]},$

Pull of significance between finest lattice spacing and extrapolated point

Lepton moments

Everything presented in this talk applies straightforwardly to the Lepton moments

$$
m_{D_s}^{1+n} \frac{\mathrm{d}M_{fg}^n}{\mathrm{d}\mathbf{q}^2} = \int \mathrm{d}q_0 \int \mathrm{d}E_\ell E_\ell^n \frac{\mathrm{d}\Gamma_{fg}}{\mathrm{d}q_0 \mathrm{d}\mathbf{q}^2 \mathrm{d}E_\ell}
$$

The first lepton moment reads

$$
96\pi^4 m_{D_s} \frac{dM_{fg}^{(1)}}{dq^2} = \lim_{\sigma \to 0} \sum_{n=0}^3 q^{4-n} \int_0^\infty dq_0 (q_0^{\text{max}} - q_0)^n \theta_\sigma (q_0^{\text{max}} - q_0) Z_n^{(1)}
$$

with

$$
Z_0^{(1)} = Y_2 + Y_3 - 2Y_4
$$

\n
$$
Z_1^{(1)} = -4Y_1 + Y_2 + 3Y_3 - 4Y_4 + 2Y_5
$$

\n
$$
Z_2^{(1)} = -6Y_1 + 3Y_3 - 2Y_4 + Y_5
$$

\n
$$
Z_3^{(1)} = -2Y_1 + Y_3
$$

Exclusive ground-state contribution to Γ_{fq}

$$
\frac{\mathrm{d}\Gamma_{fg}^{\mathrm{ex}}}{\mathrm{d}\mathbf{q}^2} = \frac{1}{24\pi^3}\frac{m_{D_s}}{q_0}|\mathbf{q}|^3 f_+^2(\mathbf{q}^2)
$$

 $f_+^2(\mathbf{q}^2)$ can be computed by fitting the leading exponential contribution to the correlation functions