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Motivations
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Exploratory study of the H 7→ X`ν decay done in
P. Gambino et al. (2022), but

. Unphysical ensemble

. L 7→ ∞ and a 7→ 0 limits missing

. Comparison only with OPE

The experimental precision of
Ds 7→ X`ν data, achievable from the
lattice, offers the opportunity to do a

complete phenomenologically relevant
calculation and at the same time to

validate the method

Γsemi−lep. = 8.27(21)× 10−14 GeV (2.5%) BES-III
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Theoretical background



Inclusive semi-leptonic Ds 7→ X`ν decay

[P. Gambino and S. Hashimoto (2020), S. Hashimoto (2017)]

. Incoming Ds meson at rest, p2 = m2
Ds

. Outgoing X hadron, pX = (q0,q)

. Ĵµgf (x) = iḡ(x)γµ(1− γ5)f(x)

Γ = G2
F

(
|Vcd|2Γcd + |Vcs|2Γcs + |Vus|2Γsu

)
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https://arxiv.org/pdf/1703.01881


Each contribution is given by

Γfg =

∫
d3pν

(2π)32Eν

d3p`
(2π)32E`

Lµν(p`, pν)Hµν
fg (p, pX)

with Lµν standard leptonic tensor and the fully non-perturbative hadronic tensor

Hµν
fg (p, pX) =

(2π)4

2mDs

〈Ds| Ĵµfg(0)δ4(P− pX)Ĵν†fg(0) |Ds〉

After a lengthy (but straightforward) derivation ...
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24π3 dΓfg
dq2

=

2∑
n=0

|q|3−n
∫ qmax

0

qmin
0

dq0(qmax
0 − q0)nZn, Zn = linear combinations of Hµν

fg (q0,q
2)

To treat numerically the integral we introduce a regularized version of the θ-function

24π3 dΓfg
dq2

= lim
σ 7→0

2∑
n=0

|q|3−n
∫ ∞
qmin
0

dq0(qmax
0 − q0)nθσ(qmax

0 − q0)Zn

lim
σ 7→0

θσ(x) = θ(x)
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The final hadron phase-space
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Asymptotic expansion for small σ: fit Ansatz for σ 7→ 0 extrapolation

[A. Evangelista et. al (2023)]

∆ρσ =

∫ ∞
0

dq0x
n [θσ(x)− θ(x)

]
ρ(q0)

x =qmax
0 − q0

. If ρ(q0) is regular at qmax
0

. n = 0, 1 ∆ρσ = O(σ2)+ even powers (Z0,1)

. n = 2 ∆ρσ = O(σ4)+ even powers (Z2)

. If ρ(q0) = Z · δ(q0 − qmax
0 ) + · · ·

. n = 0 ∆ρσ = 1
2
Z !?

. n > 0 ∆ρσ = 0
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! Decay rate is not vanishing at q2
max

? Experimental prescription may differ
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Γfg from lattice QCD

We need the hadronic tensor which is the spectral density of the correlation function

Mµν
fg (t,q2) =

∫ ∞
0

dq0H
µν
fg (q0,q

2)e−q0t

that in practice is obtained by

Mµν
fg (t2 − t1,q2) = lim

tsnk 7→+∞
tsrc 7→−∞

Cµν4pt(tsnk, t2, t1, tsrc;q)

C2pt(tsnk − t2)C2pt(t1 − tsrc)

. t = t2 − t1 = a, 2a, · · · Euclidean time

. t2 − tsnk, tsrc − t1 � 0 checked
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Going from

Mµν
fg (t,q) =

∫ ∞
0

dq0H
µν
fg (q0,q

2)e−q0t

to∫ ∞
qmin
0

dq0(qmax
0 − q0)nθσ(qmax

0 − q0)Hµν
fg (q0,q

2)

implies solving a numerically ill-conditioned (but mathematically well-posed) inverse Laplace
transform

. t = a, 2a, 3a, · · · <∞, scarce information

. signal-to-noise ratio of Mµν
fg (t,q) deteriorates exponentially
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One way out: HLT (R. Kellermann’s talk for another approach)

 

Extraction of spectral densities from lattice correlators

Martin Hansen,1 Alessandro Lupo,2 and Nazario Tantalo3
1INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy

2University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
3University of Rome Tor Vergata and INFN Roma Tor Vergata,

Via della Ricerca Scientifica 1, I-00133 Rome, Italy

(Received 25 March 2019; published 31 May 2019)

Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X
x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 094508 (2019)

2470-0010=2019=99(9)=094508(15) 094508-1 Published by the American Physical Society

Many applications by now

R-ratio
Phys.Rev.Lett. 130 (2023) 24, 241901
F. Margari’s poster, D. Stewart’s talk

Hadronic τ decay
A. Evangelista et al. (2023), Phys.Rev.Lett. 132 (2024)
G. Gagliardi’s talk

Heavy H 7→ X`ν inclusive decay
P. Gambino et al. (2022)

Spectroscopy at non-zero temperature
A. Smecca’s talk Meson spectroscopy

Ed. Bennet et al. (2024)
N. Forzano’s talk

Exclusive scattering amplitudes from lattice QCD
A. Patella & N. Tantalo (2024)
A. Patella’s talk

Many others!
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while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 094508 (2019)

2470-0010=2019=99(9)=094508(15) 094508-1 Published by the American Physical Society

Many applications by now

R-ratio
Phys.Rev.Lett. 130 (2023) 24, 241901
F. Margari’s poster, D. Stewart’s talk

Hadronic τ decay
A. Evangelista et al. (2023), Phys.Rev.Lett. 132 (2024)
G. Gagliardi’s talk

Heavy H 7→ X`ν inclusive decay
P. Gambino et al. (2022)

Spectroscopy at non-zero temperature
A. Smecca’s talk Meson spectroscopy

Ed. Bennet et al. (2024)
N. Forzano’s talk

Exclusive scattering amplitudes from lattice QCD
A. Patella & N. Tantalo (2024)
A. Patella’s talk

Many others!

9 / 16

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.241901
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.074513
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261901
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261901
https://link.springer.com/article/10.1007/JHEP07(2022)083
https://arxiv.org/abs/2405.01388
https://arxiv.org/abs/2407.02069


In general we want to extract ρσ =
∫

dωKσ(ω)ρ(ω) from C(t) =
∫∞
0

dω e−ωtρ(ω)

. A linear estimator for the solution can be written by
approximating the target smearing (Schwartz) kernel

. The estimator is model independent and unbiased in
the limits T 7→ ∞ and vanishing statistical errors

ρσ =

T∑
τ=1

gτC(aτ)

Kapprox
σ,T =

T∑
τ=1

gτ (T )e−aωτ

lim
T 7→∞

Kapprox
σ,T = Kσ

For T <∞ one needs to estimate the residual systematic uncertainty due to the kernel approximation
in addition to statistical error

10 / 16



In general we want to extract ρσ =
∫

dωKσ(ω)ρ(ω) from C(t) =
∫∞
0

dω e−ωtρ(ω)

. A linear estimator for the solution can be written by
approximating the target smearing (Schwartz) kernel

. The estimator is model independent and unbiased in
the limits T 7→ ∞ and vanishing statistical errors

ρσ =

T∑
τ=1

gτC(aτ)

Kapprox
σ,T =

T∑
τ=1

gτ (T )e−aωτ

lim
T 7→∞

Kapprox
σ,T = Kσ

For T <∞ one needs to estimate the residual systematic uncertainty due to the kernel approximation
in addition to statistical error

10 / 16



. The coefficients g are calculated by minimizing

W [λ, g] = (1− λ)
A[g]

A[0]
+ λB[g]

. Suppression of the statistical error

B[g] = gT · ˆCOV
[
C(t)

]
· g ≡

(
δρ
)2

. Accuracy of the approximated kernel

A[g] =

∫ ∞
E0

dω


T∑
τ=1

gτe
−aωτ −Ktarget

σ


2

E0 ∼ 0.9 · qmin
0
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Stability analysis to tune λ
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102 103 104 105 106 107 108

0← λ A[g]
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ρ? :
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A[0]B[g]
= 103 plateaux

ρ?? :
A[g]

A[0]B[g]
= 102 systematic

pull variable to assess systematic over statical error

PHLT =
ρ? − ρ??√
δρ?2 + δρ??2

∆syst = |ρ? − ρ??| erf

(
PHLT

√
2

)

?(Z1 and Z2 in backup)
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O(3000) stability analysis in one plot

Distribution of the pull variable PHLT across all the stability analysis
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Results ad fixed ensemble and σ
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Conclusions

. The HLT method offers a solid way-out to the challenging computation of inclusive decay rates,
but that is not enough to do physics ...

Netx-to-do list

. Finite Size Effects

. Continuum Limit

. σ 7→ 0 extrapolation

. Integration over q2

. Comparison with experiments

Christiane Groß’s talk right after me

Thank you for the attention and don’t run away!!!
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Backup



Definition of Zn

Z0 ≡ Y2 + Y3 − 2Y4 Z1 ≡ 2(Y3 − 2Y1 − Y4) Z2 ≡ Y3 − 2Y1

Form factors decomposition of the hadronic tensor

m3
Ds
Hµν(p, px) = gµνm2

Ds
h1 + pµpνh2 + (p− pX)µ(p− pX)νh3

+[pµ(p− pX)ν + (p− pX)µpν ]h4 − iεµναβpα(p− pX)βh5

Y1 = −mDs

∑
ij

n̂in̂jHij = h1

Y2 = mDsH
00 = h1 + h2 +

(
1− q0

mDs

)2

h3 + 2

(
1− q0

mDs

)
h4

Y3 = mDs

∑
ij

q̂iq̂jHij = −h1m
2
Ds

+ |q|2h3

Y4 = −mDs

∑
i

q̂iH0i =

(
1− q0

mDs

)
|q|h3 + |q|h4

Y5 =
imDs

2

∑
ijk

εijk q̂kHij = |q|h5

n̂2 = 1

n̂ · q = 0

q̂ = q/|q|
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Production line

This is repeated for:

. 2 channels, third coming

. Z0, Z1 and Z2

. 2 smearing kernels

. O(10) vales of σ

. 10 values of q2

. for each ensemble

ETMC ensembles all close to physical point

ID L3 × T a [fm] L [fm]

B48 483 × 96 0.07951 3.82
B64 643 × 128 0.07951 5.09
B96 963 × 192 0.07951 7.63

C80 803 × 160 0.06816 5.45

D96 963 × 92 0.05688 5.46

E112 1123 × 224 0.04891 5.47



Final results

Spline interpolation + trapezoid integration
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σ 7→ 0 extrapolation

. Z0 : σ2 + even powers

. Z1 : σ2 + even powers

. Z2 : σ4 + even powers
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Continuum extrapolation

0.000 0.001 0.002 0.003 0.004 0.005 0.006

a2 [fm]2

0.010

0.012

0.014

0.016

0.018

24
π

3
·(

d
Γ
f
g

d
q

2

) σ

χ2/dof=1.45e-01

χ2/dof=2.13e-01

fg=cs, Z0, q2=0.035 [GeV]2, σ = 436 [MeV],

0.000 0.001 0.002 0.003 0.004 0.005 0.006

a2 [fm]2

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

24
π

3
·(

d
Γ
f
g

d
q

2

) σ

χ2/dof=2.34e-01

χ2/dof=3.22e-01

fg=cs, Z1, q2=0.314 [GeV]2, σ = 436 [MeV],

Pull of significance between finest lattice spacing
and extrapolated point

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q2

−2

−1

0

1

2

P
a

fg =cs

Z0 Z1 Z2



Lepton moments

Everything presented in this talk applies straightforwardly to the Lepton moments

m1+n
Ds

dMn
fg

dq2
=

∫
dq0

∫
dE`E

n
`

dΓfg
dq0dq2dE`

The first lepton moment reads

96π4mDs

dM
(1)
fg

dq2
= lim
σ 7→0

3∑
n=0

q4−n
∫ ∞
0

dq0(qmax
0 − q0)nθσ(qmax

0 − q0)Z(1)
n

with

Z
(1)
0 = Y2 + Y3 − 2Y4

Z
(1)
1 = −4Y1 + Y2 + 3Y3 − 4Y4 + 2Y5

Z
(1)
2 = −6Y1 + 3Y3 − 2Y4 + Y5

Z
(1)
3 = −2Y1 + Y3



Exclusive ground-state contribution to Γfg

dΓex
fg

dq2
=

1

24π3

mDs

q0
|q|3f2

+(q2)

f2
+(q2) can be computed by fitting the leading exponential contribution to the correlation functions


