Towards more accurate $D_{(s)} \to \pi(K)$ and $B_{(s)} \to \pi(K)$ Form Factors

Logan Roberts

with Chris Bouchard, Olmo Francesconi, Will Parrott

Lattice 2024, July 30th

Form Factor Motivation

CKM matrix elements calculated from kinematic form factors.

$$
\frac{d\Gamma}{dq^2}\propto |V_{CKM}|^2\times |f(q^2)|^2,
$$

|*Vcd* | = 0.221±0.004, |*Vub*| = (3.82±0.20)×10−³ [PDG, 2024].

- **Generic heavy-quark simulated at various masses.**
- Allows extrapolation to physical b-quark mass.

• $N_f = 2 + 1 + 1$ MILC-HISQ gluon fields [1004.0342], [1212.4768].

• Fully relativistic, nearly full kinematic range.

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)
 $\begin{array}{cc}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{array}$

Gluon Field Ensembles

Per ensemble we set smallest $am_h \approx am_c^{\text{phys}}$.

Coming soon:

- coarser ensembles, $a \approx 0.12$ fm, 0.15fm.
- $am_h = am_b^{phys}$ on select finer ensembles.

Max q^2 on uf5 \approx 20GeV² .

Correlator Fit Equations

Two-point correlator fit equation (e.g. π):

$$
C_2^{\pi}(t) = \sum_{i=0}^{N_{\text{exp}}-1} \Big[|A_i^{\pi,n}|^2 (e^{-E_i^{\pi,n}t} + e^{-E_i^{\pi,n}(N_t-t)}) - (-1)^t |A_i^{\pi,0}|^2 (e^{-E_i^{\pi,0}t} + e^{-E_i^{\pi,0}(N_t-t)} \Big].
$$

Three-point correlator fit equation (e.g. $H \rightarrow \pi$):

$$
C_3^{\pi,H}(t,T) = \sum_{i,j=0}^{N_{\text{exp}}-1} \left[A_i^{\pi,n} J_{ij}^{nn} A_j^{H,n} e^{-\mathcal{E}_i^{\pi,n} t} e^{-\mathcal{E}_j^{H,n}(T-t)} - (-1)^{(T-t)} A_i^{\pi,n} J_{ij}^{no} A_j^{H,o} e^{-\mathcal{E}_i^{\pi,n} t} e^{-\mathcal{E}_j^{H,o}(T-t)} - (-1)^t A_i^{\pi,o} J_{ij}^{on} A_j^{H,n} e^{-\mathcal{E}_i^{\pi,o} t} e^{-\mathcal{E}_j^{H,n}(T-t)} + (-1)^T A_i^{\pi,o} J_{ij}^{oo} A_j^{H,o} e^{-\mathcal{E}_i^{\pi,o} t} e^{-\mathcal{E}_j^{H,o}(T-t)} \right].
$$

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)
 $\begin{array}{cc}\n0.000 & 0.000 \\
0.000 & 0.000\n\end{array}$

Form Factor Equations

Matrix element for ground-state lattice current J_{00}^{nn} (e.g. $H \rightarrow \pi$):

$$
\langle \pi | J_{\text{latt}} | H \rangle = 2 Z_{\text{disc}} \sqrt{M_H E_\pi} \times J_{00}^{nn}.
$$

Form factor relations to lattice matrix elements:

Scalar:
$$
\langle \pi | S_{\text{latt}} | H \rangle = f_0(q^2) \times \frac{M_H^2 - M_\pi^2}{m_h - m_u},
$$

\nVector: $Z_V \langle \pi | V_{\text{latt}}^{\mu} | \hat{H} \rangle = f_+(q^2) \left(p_H^{\mu} + p_\pi^{\mu} - \frac{M_H^2 - M_\pi^2}{q^2} q^{\mu} \right)$
\n $+ f_0(q^2) \frac{M_H^2 - M_\pi^2}{q^2} q^{\mu}$
\nTensor: $Z_T(\mu) \langle \hat{\pi} | T_{\text{latt}}^{\kappa 0} | \hat{H} \rangle = f_T(q^2, \mu) \times \frac{2iM_H p_\pi^k}{M_H^2 + M_\pi^2}.$

Note: *H*ˆ and πˆ denote local non-Goldstone pseudoscalars. *Z* terms calculated in [1211.6966], [1008.4562], [1305.1462], [2008.02024]

Fitting requires inverting correlation matrix. For $H \rightarrow \pi$, per ensemble we fit over:

- \bullet 4 \times *am*_{*h*}.
- $5 \times \theta$, where $\theta = |\vec{a p}_{\pi,K}| \times \frac{N_{\text{M}}}{\sqrt{3}}$ $\frac{\mathsf{v}_x}{3\pi}$,
- \bullet 4 \times *T*.
- 4× spin-taste copies for *H* from using local current operators,
- \bullet 4 \times 3-point current components: (scalar, temporal vector, spacial vector, tensor),

... and the $H_s \to K$ alternative of each of the above.

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)

0000000 000000 000000

*N*_{exp} and *t*_{min} Testing

- Uncertainty decreases at smaller t_{min}/a .
- **Posterior central value** saturates at higher N_{exp}.
- Here I choose $t_{\text{min}}/a = 7$.
- **•** Empirical Bayes testing favors $N_{\rm exp} = 4$ across all ensembles.

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)

0000000 000000 00000

Priors and Bayesian Fitting

 $P_i \pm \sigma_i =$ Fit Parameter, $\tilde{P}_i \pm \tilde{\sigma_i} =$ Prior on Parameter,

$$
\chi^2 \to \chi^2_{\text{aug}} = \chi^2 + \chi^2_{\text{prior}},
$$

$$
\chi^2_{\text{prior}} = \sum_i \left(\frac{P_i - \tilde{P}_i}{\tilde{\sigma}_i} \right).
$$

Priors $\tilde{P}_i \pm \tilde{\sigma_i}$ are initially set from $M_{\textit{eff}}$ and $A_{\textit{eff}}$ plots, refined through Empirical Bayesian Analysis.

Some parameters warrant precise priors with narrow widths:

Others warrant conservative priors with broad widths:

Sample Fit Result - Prior vs. Posterior Bounds

Sample Fit Result - Reconstructed Effective Amplitude

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)
 $\frac{1}{00000}$

$H \rightarrow \pi$ (*a* = 0.09fm, m_s/m_l = 5) form factors

[Project Motivations and Specifics](#page-1-0) [Fit Procedure](#page-4-0) [Fit Refining](#page-10-0) [Preliminary Results and Future Steps](#page-14-0)
 $\begin{array}{ccc}\n\text{OOD} & \text{OOD} & \text{OOD} \\
\text{OOD} & \text{OOD} & \text{OOD} & \text{OOD}\n\end{array}$

$H_s \rightarrow K$ (*a* = 0.09fm, m_s/m_l = 5) form factors

Recap and Outlook

Key Points

- **Kinematic form factors** \rightarrow $|V_{ub}|$ and $|V_{cd}|$.
- **•** First use of heavy-HISQ method for $H_{(s)} \to \pi(K)$ across wide kinematic range.
- Bayesian Statistics integral to fitting method (priors).

Next steps:

- Fit refinement:
	- SVD cut analysis,
	- Empirical Bayes testing \bullet of 3pt priors,
	- Stability testing.
- Modified z-expansion:
	- Physical b-quark mass extrapolation,
	- Continuum limit extrapolation.
- Z_{disc} : tree level discretization correction starting at $(am_h)^4$ [Monahan, Shigemitsu, Horgan, 1211.6966].
- \bullet Z_V : derived from the partially conserved vector current relation [Na *et al.*, 1008.4562],[Koponen *et al.*, 1305.1462].

$$
\text{For} \quad H \to \pi: \quad Z_V = \left| \frac{(m_h - m_l) \langle \pi | S | H \rangle}{(M_H - M_\pi) \langle \pi | V^0 | H \rangle} \right|_{q^2 = q^2_{\text{max}}}
$$

 \bullet Z_T : tensor current renormalization at energy scale = 4.8GeV $≈ m_b$ [Hatton *et al.*, 2008.02024].

Gaussian Bayes Factor (GBF) = probability density of randomly sampling the fit data from fit model (including priors). By construction it punishes over-fitting.

- Optimization: minimize $\chi^2_{\mathsf{aug}},$ maximise GBF.
- ∆*log*(GBF) ≥ 3 is considered significant. Increasing prior width artificially lowers $\chi^2_{\mathsf{aug}}.$
- Adding "noise" to priors restores $\chi^2/\text{d.o.f.}\approx 1.$

Back-Up: Sample Correlator Fitting

