Project Motivations and Specifics

Fit Procedure

Fit Refining

Preliminary Results and Future Steps

Towards more accurate $D_{(s)} \rightarrow \pi(K)$ and $B_{(s)} \rightarrow \pi(K)$ Form Factors

Logan Roberts

with Chris Bouchard, Olmo Francesconi, Will Parrott

Lattice 2024, July 30th

Project Motivations and Specifics

Fit Procedure

Fit Refining

Preliminary Results and Future Steps

Form Factor Motivation

CKM matrix elements calculated from kinematic form factors.

$$rac{d\Gamma}{dq^2} \propto |V_{CKM}|^2 imes |f(q^2)|^2,$$

 $|V_{cd}| = 0.221 \pm 0.004, |V_{ub}| = (3.82 \pm 0.20) \times 10^{-3}$ [PDG, 2024].

- Generic heavy-quark simulated at various masses.
- Allows extrapolation to physical b-quark mass.

N_f = 2 + 1 + 1 MILC-HISQ gluon fields [1004.0342], [1212.4768].

• Fully relativistic, nearly full kinematic range.

Fit Refining

Preliminary Results and Future Steps

Gluon Field Ensembles

Set	pprox <i>a</i> (fm)	m_s/m_l	$N_x^3 \times N_t$	<i>am_h</i> range	$ \overrightarrow{p}_{\max}^{\pi,K} $ [MeV/c ²]	T range
f-5	0.09	5	$32^3 imes 96$	0.450-0.8	311	15-24
f-phys	0.09	27	$64^3 imes 96$	0.433-0.8	330	15-24
sf-5	0.06	5	$48^{3} \times 144$	0.274-0.8	622	22-31
sf-phys	0.06	27	$96^3 imes 192$	0.2585-0.8	648	22-31
uf-5	0.04	5	64 ³ × 192	0.194-0.8	583	29-44

• Per ensemble we set smallest $am_h \approx am_c^{phys}$.

Coming soon:

- coarser ensembles, $a \approx 0.12$ fm, 0.15 fm.
- $am_h = am_b^{phys}$ on select finer ensembles.
- Max q^2 on uf5 \approx 20GeV².

Correlator Fit Equations

Two-point correlator fit equation (e.g. π):

$$C_{2}^{\pi}(t) = \sum_{i=0}^{N_{exp}-1} \left[|A_{i}^{\pi,n}|^{2} (e^{-E_{i}^{\pi,n}t} + e^{-E_{i}^{\pi,n}(N_{t}-t)}) - (-1)^{t} |A_{i}^{\pi,o}|^{2} (e^{-E_{i}^{\pi,o}t} + e^{-E_{i}^{\pi,o}(N_{t}-t)}) \right]$$

Three-point correlator fit equation (e.g. $H \rightarrow \pi$):

$$C_{3}^{\pi,H}(t,T) = \sum_{i,j=0}^{N_{exp}-1} \Big[A_{i}^{\pi,n} J_{ij}^{nn} A_{j}^{H,n} e^{-E_{i}^{\pi,n}t} e^{-E_{j}^{H,n}(T-t)} - (-1)^{(T-t)} A_{i}^{\pi,n} J_{ij}^{no} A_{j}^{H,o} e^{-E_{i}^{\pi,n}t} e^{-E_{j}^{H,o}(T-t)} - (-1)^{t} A_{i}^{\pi,o} J_{ij}^{on} A_{j}^{H,n} e^{-E_{i}^{\pi,o}t} e^{-E_{j}^{H,n}(T-t)} + (-1)^{T} A_{i}^{\pi,o} J_{ij}^{oo} A_{j}^{H,o} e^{-E_{i}^{\pi,o}t} e^{-E_{j}^{H,o}(T-t)} \Big].$$

Fit Refining

Preliminary Results and Future Steps

Form Factor Equations

Matrix element for ground-state lattice current J_{00}^{nn} (e.g. $H \rightarrow \pi$):

$$\langle \pi | \boldsymbol{J}_{\mathsf{latt}} | \boldsymbol{H}
angle = 2 \boldsymbol{Z}_{\mathsf{disc}} \sqrt{\boldsymbol{M}_{\!\boldsymbol{H}} \boldsymbol{E}_{\pi}} imes \boldsymbol{J}_{\mathsf{00}}^{\boldsymbol{nn}}.$$

Form factor relations to lattice matrix elements:

$$\begin{array}{ll} \text{Scalar:} & \langle \pi | \, \boldsymbol{S}_{\text{latt}} | H \rangle = f_0(q^2) \times \frac{M_H^2 - M_\pi^2}{m_h - m_u}, \\ \text{Vector:} & Z_V \langle \pi | \, \boldsymbol{V}_{\text{latt}}^\mu | \hat{H} \rangle = f_+(q^2) \left(p_H^\mu + p_\pi^\mu - \frac{M_H^2 - M_\pi^2}{q^2} q^\mu \right) \\ & \quad + f_0(q^2) \frac{M_H^2 - M_\pi^2}{q^2} q^\mu \\ \text{Tensor:} & Z_T(\mu) \langle \hat{\pi} | \, T_{\text{latt}}^{k0} | \hat{H} \rangle = f_T(q^2, \mu) \times \frac{2i M_H p_\pi^k}{M_H^2 + M_\pi^2}. \end{array}$$

Note: \hat{H} and $\hat{\pi}$ denote local non-Goldstone pseudoscalars. *Z* terms calculated in [1211.6966], [1008.4562], [1305.1462], [2008.02024]

Fitting requires inverting correlation matrix. For $H \rightarrow \pi$, per ensemble we fit over:

- $4 \times am_h$,
- 5 × θ , where $\theta = |a\overrightarrow{p}_{\pi,K}| \times \frac{N_x}{\sqrt{3}\pi}$,
- 4 × *T*,
- 4× spin-taste copies for *H* from using local current operators,
- 4× 3-point current components: (scalar, temporal vector, spacial vector, tensor),
- ... and the $H_s \rightarrow K$ alternative of each of the above.

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

H to pi, f-5 ensemble, Sample Fit Correlation Matrix

Project Motivations and Specifics

Fit Procedure

Fit Refining ●000 Preliminary Results and Future Steps

$N_{\rm exp}$ and $t_{\rm min}$ Testing

- Uncertainty decreases at smaller *t*_{min}/*a*.
- Posterior central value saturates at higher *N*_{exp}.

- Here I choose $t_{\min}/a = 7$.
- Empirical Bayes testing favors *N*_{exp} = 4 across all ensembles.

Fit Refining o●oo Preliminary Results and Future Steps

Priors and Bayesian Fitting

 $P_i \pm \sigma_i =$ Fit Parameter, $\tilde{P}_i \pm \tilde{\sigma}_i =$ Prior on Parameter,

$$\begin{split} \chi^2 &\to \chi^2_{\text{aug}} = \chi^2 + \chi^2_{\text{prior}}, \\ \chi^2_{\text{prior}} &= \sum_i \big(\frac{P_i - \tilde{P}_i}{\tilde{\sigma}_i} \big). \end{split}$$

Priors $\tilde{P}_i \pm \tilde{\sigma}_i$ are initially set from M_{eff} and A_{eff} plots, refined through Empirical Bayesian Analysis.

Catting Driago	000000	00000
Setting Priors		

Some parameters warrant precise priors with narrow widths:

Setting Priors

Others warrant conservative priors with broad widths:

Fit Refining

Preliminary Results and Future Steps

Sample Fit Result - Prior vs. Posterior Bounds

Fit Refining

Preliminary Results and Future Steps

Sample Fit Result - Reconstructed Effective Amplitude

Preliminary Results and Future Steps

$H \rightarrow \pi$ (a = 0.09 fm, $m_s/m_l = 5$) form factors

Preliminary Results and Future Steps

$H_s \rightarrow K \ (a = 0.09 \text{fm}, \ m_s/m_l = 5)$ form factors

Recap and Outlook

Key Points

- Kinematic form factors $\rightarrow |V_{ub}|$ and $|V_{cd}|$.
- First use of heavy-HISQ method for H_(s) → π(K) across wide kinematic range.
- Bayesian Statistics integral to fitting method (priors).

Next steps:

- Fit refinement:
 - SVD cut analysis,
 - Empirical Bayes testing of 3pt priors,
 - Stability testing.
- Modified z-expansion:
 - Physical b-quark mass extrapolation,
 - Continuum limit extrapolation.

- Z_{disc}: tree level discretization correction starting at (am_h)⁴ [Monahan, Shigemitsu, Horgan, 1211.6966].
- Z_V: derived from the partially conserved vector current relation [Na *et al.*, 1008.4562],[Koponen *et al.*, 1305.1462].

For
$$H \to \pi$$
: $Z_V = \left| \frac{(m_h - m_l) \langle \pi | S | H \rangle}{(M_H - M_\pi) \langle \pi | V^0 | H \rangle} \right|_{q^2 = q_{\max}^2}$

• Z_T : tensor current renormalization at energy scale = 4.8GeV $\approx m_b$ [Hatton *et al.*, 2008.02024].

Gaussian Bayes Factor (GBF) = probability density of randomly sampling the fit data from fit model (including priors). By construction it punishes over-fitting.

- Optimization: minimize $\chi^2_{\rm aug}$, maximise GBF.
- Δlog(GBF) ≥ 3 is considered significant. Increasing prior width artificially lowers χ²_{aug}.
- Adding "noise" to priors restores $\chi^2/d.o.f. \approx 1$.

Back-Up: Sample Correlator Fitting

F5 Ensemble 3pt-Correlator Comparison: am=0.675, θ =1.282, T=24