

Exploring Semileptonic $B_s \rightarrow D_s^* \ell \nu_\ell$ Decays

Anastasia Boushmelev In collaboration with Matthew Black & Oliver Witzel RBC-UKQCD

Theoretical Particle Physics, Center for Particle Physics Siegen, University of Siegen

Boston University Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

<u>CERN</u>

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno <u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

1

Semileptonic $B_s \rightarrow D_s^* \ell \nu_\ell$ Decays

 $\cdot \ B
ightarrow D^* \ell
u_\ell$ similar, just different spectator

The CKM Matrix

- The Standard Model has six quark flavours
- Probability for transition of one flavour to another
- · Parameters can be determined from a combination of experiment and theory
- Hierachical structure

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.97373 \pm 0.00031 & 0.2243 \pm 0.0008 & (3.82 \pm 0.20) \times 10^{-3} \\ 0.221 \pm 0.004 & 0.975 \pm 0.006 & (40.8 \pm 1.4) \times 10^{-3} \\ (8.6 \pm 0.2) \times 10^{-3} & (41.5 \pm 0.9) \times 10^{-3} & 1.014 \pm 0.029 \end{pmatrix}$$

[PDG, Workman et al. PTEP (2022) 083C01]

Motivation: Inclusive vs. Exclusive V_{cb}

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- 2 3 σ tension between inclusive and exclusive
- $V_{cb}^{incl} = (42.16 \pm 0.51) \times 10^3$
- $V_{cb}^{excl} = (39.75 \pm 0.69) \times 10^3$

[FLAG, Aoki et al. EPJC (2022) 82.869]

Motivation: Test Lepton Flavour Universality

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(B o D^{(*)} au
u_{ au})}{\mathcal{B}(B o D^{(*)} \ell
u_{\ell})}$$

with $\ell = e, \mu$

[HFLAV, Moriond 2024]

Determining V_{cb} from Exclusive Semileptonic Decays

- Form factors from LQCD, LCSRs
- Experiments: BaBar, BELLE, BELLE 2, LHCb
- Vector final states are experimentally favoured
- Use narrow width approximation for $D^*_{(s)}$

Existing Results for $B \rightarrow D^* \ell \nu_\ell$ Form Factors

• $V_{cb}^{\text{excl}} = 39.03(87) \times 10^{-3}$ [HPQCD, Harison et al. (2024), PRD 109.094515] For $B_s \to D_s^* \ell \nu_{\ell}$ see [HPQCD, Harison et al.

(2022), PRD 105.094506]

• $V_{cb}^{\text{excl}} = 39.19(91) \times 10^{-3}$

[JLQCD, Aoki et al. (2023), PRD 109.074503]

• $V_{cb}^{\text{excl}} = 38.40(78) \times 10^{-3}$

[FNAL-MILC, Bazavov et al. (2022), EPJC 81.1141]

• $V_{cb}^{\text{excl}} = 40.25(71) \times 10^{-3}$

[M. Bordone, A. Jüttner arxiv:2406.10074 (2024)]

• $V_{cb}^{\text{incl}} = 42.19(78) \times 10^{-3}$ [HFLAV, Amhis et al. (2023), PRD 107.052008]

With
$$w = v_{B_s} \cdot v_{D_s^*}$$

7

Our Work

Lattice Set Up

- RBC/UKQCD's 2+1 flavour gauge field ensembles
- Dynamical up/down and strange quarks in the sea and light sector using chiral domain-wall fermions
- · Specifically optimized heavy domain-wall fermions for charm
- Relativistic heavy quark (RHQ) action for bottom
- Bottom, charm and strange close to physical

	L	Т	a^{-1} GeV	am _l sea	am ^{sea}	$M_\pi/$ MeV	$srcs \times N_{conf}$
C1	24	64	1.7848	0.005	0.040	340	1×1636
C2	24	64	1.7848	0.010	0.040	433	1×1419
M1	32	64	2.3833	0.004	0.030	302	2×628
M2	32	64	2.3833	0.006	0.030	362	2×889
MЗ	32	64	2.3833	0.008	0.030	411	2×544
F1S	48	96	2.785	0.002144	0.02144	268	24 imes 98

$$\begin{split} \langle D^*_{(s)}(k,\varepsilon) | \bar{c}\gamma^{\mu} b | B_{(s)}(p) \rangle = & V(q^2) \frac{2i\epsilon^{\mu\nu\rho\sigma} \varepsilon^*_{\nu} k_{\rho} p_{\sigma}}{M_{B_{(s)}} + M_{D^*_{(s)}}} \\ \langle D^*_{(s)}(k,\varepsilon) | \bar{c}\gamma^{\mu} \gamma_5 b | B_{(s)}(p) \rangle = & A_0(q^2) \frac{2M_{D^*_{(s)}} \varepsilon^* \cdot q}{q^2} q^{\mu} \\ &+ A_1(q^2) (M_{B_{(s)}} + M_{D^*_{(s)}}) \left[\varepsilon^{*\mu} - \frac{\varepsilon^* \cdot q}{q^2} q^{\mu} \right] \\ &- A_2(q^2) \frac{\varepsilon^* \cdot q}{M_{B_{(s)}} + M_{D^*_{(s)}}} \left[k^{\mu} + p^{\mu} - \frac{M^2_{B_{(s)}} - M^2_{D^*_{(s)}}}{q^2} q^{\mu} \right] \end{split}$$

Extract Form Factors

- Define 3pt 2pt ratios
- Different combinations of polarizations, operators and momenta give access to form factors

$$R_{B_{(s)}\to D_{(s)}^{*}}^{\Gamma,\mu}(t,t_{sink}) = \frac{C_{B_{(s)}\to D_{(s)}^{*}}^{3pt,\Gamma,\mu}(t,t_{sink},k)}{\frac{1}{3}\sqrt{\sum_{i}C_{D_{(s)}^{*}}^{2pt}(t,k)C_{B_{(s)}}^{2pt}(t_{sink}-t,p)}} \sqrt{\frac{4E_{D_{(s)}^{*}}M_{B_{(s)}}\sum_{j}\varepsilon_{j}(k)\varepsilon^{*j}(k)}{e^{-E_{D_{(s)}^{*}}}e^{-M_{B_{(s)}}(t_{sink-t})}}}{\frac{t\to\infty}{t_{sink}-t\to\infty}}\varepsilon^{\mu}(k)\langle D_{(s)}^{*}(k,\varepsilon)|\bar{c}\Gamma b|B_{(s)}(p)\rangle}$$

• Next step: Relate matrix element to form factor

$$\widetilde{A_{0}}(q^{2}) = \frac{1}{2} \frac{M_{D_{(s)}^{*}}}{E_{D_{(s)}^{*}}M_{B_{(s)}}} \frac{1}{k^{\nu}} q_{\mu} \cdot \varepsilon^{\nu}(k) \langle D_{(s)}^{*}(k,\lambda) | \overline{c} \gamma^{\mu} \gamma_{5} b | B_{(s)}(0) \rangle$$

• Calculate renormalisation factors using mostly NPR

[Hashimoto et al. (1999), PRD 61.014502] , [El-Khadra et al. (2001), PRD D64.014502]

 \cdot To be calculated independently and blinded

Exploratory Work

- Basic search for signal
- $\cdot\,$ Simple ground state fits
- Taking advantage of existing data
- Get reference point for improvements
- Focus on $B_{
 m s}
 ightarrow D_{
 m s}^* \ell
 u_\ell$

Effective Energy of D_s^{*}

- $E_{eff}^{D_s^*}(n^2=0)=0.7348(10)$
- $E_{eff}^{D_s^*}(n^2 = 1) = 0.7458(11)$
- $E_{eff}^{D_s^*}(n^2 = 2) = 0.7567(12)$
- $E_{eff}^{D_s^*}(n^2 = 3) = 0.7673(14)$
- $E_{eff}^{D_s^*}(n^2 = 4) = 0.7775(16)$
- $E_{eff}^{D_s^*}(n^2 = 5) = 0.7877(18)$
- In physical units: $M_{D_s^*} = 2.0464(28)$ GeV
- PDG: $M_{D_s^*} = 2.12212(4)$ GeV
- Fit ranges: 18-25

Effective Energy of D_s^{*}: Dispersion Relation

Excellent agreement between measured values and lattice dispersion relation

$$\widetilde{A}_0(n^2 = 1) = 0.3174(55)$$

$$\widetilde{A}_0(n^2 = 2) = 0.3047(70)$$

$$\widetilde{A}_0(n^2 = 3) = 0.2885(95)$$

$$\widetilde{A}_0(n^2 = 4) = 0.301(10)$$

$$\widetilde{A}_{1}(n^{2} = 0) = 0.4686(72)$$

$$\widetilde{A}_{1}(n^{2} = 1) = 0.4591(78)$$

$$\widetilde{A}_{1}(n^{2} = 2) = 0.445(10)$$

$$\widetilde{A}_{1}(n^{2} = 4) = 0.440(14)$$

$$\widetilde{A}_2(n^2 = 1) = 0.1425(24)$$

$$\widetilde{A}_2(n^2 = 2) = 0.1362(29)$$

$$\widetilde{A}_2(n^2 = 3) = 0.1265(41)$$

$$\widetilde{A}_2(n^2 = 4) = 0.1320(44)$$

$$\widetilde{V}(n^2 = 1) = 0.1036(37)$$

$$\widetilde{V}(n^2 = 2) = 0.1005(45)$$

$$\widetilde{V}(n^2 = 3) = 0.0940(57)$$

$$\widetilde{V}(n^2 = 4) = 0.0904(36)$$

All Form Factors vs. q^2

- Only small range at high q^2 resolved
- \cdot Simulating D_{s}^{*} with larger momenta desired

Next Steps

Improve fits

- Account for correlations
- Include excited states
- Variation of fit ranges

Exploit full data set

- Analyse other ensembles
- Include 1-loop O(a) improvement
- Study other charm and strange quark masses
- Extend analysis to $B
 ightarrow D^* \ell
 u$

Study improvements

- Z2 wall sources w and w/o smearing vs. large number of random point sources
- Several source-sink separations
- $\cdot D_{s}^{*}$ with higher momenta

Perturbative calculation

- Mostly NP renormalisation factors (blinded)
- Coefficients for 1-loop O(a) improvement