Numerical Detail 00000

Light 1⁻⁺ Hybrid Decay in $N_f = 2$ Lattice QCD

Si-Yang Chen In collaboration with : Juzheng Liang, Ying Chen, Chunjinag Shi, Wei Sun.

Institute of High Energy Physics

Aug. 1, 2024

Light 1^{-+} Hybrid Decay in $N_f = 2$ Lattice QCD

2 Formalism

3 Numerical Detail

1^{-+} mesons as candidate of hybrid

- Mesons classicification:
 - quark model mesons($\bar{q}q$)
 - glueball(<u>gg...</u>)
 - hybrid($\bar{q}qg$)
 - ٠ ...
- 1^{-+} is exotic quantum number.
- Candidate of 1⁻⁺ hybrid
 - iso-scalar: $\eta_1(1855)$
 - iso-vector: $\pi_1(1600), \pi_1(1400), \pi_1(2015)$

化间面 化医丙烯基丙

Numerical Detail

Experimental status

- $\eta_1(1855)$ was observed by BESIII in $J/\Psi \rightarrow \gamma \eta \eta'$ channel(BESIII, PRL.129,192002(2022))
- Resonance parameters:

•
$$m_{\eta_1} = 1855 \pm 9^{+6}_{-1} \text{ MeV}$$

• $\Gamma_{\eta_1} = 188 \pm 18^{+3}_{-8} \text{ MeV}$

- Various experimental report of $1^{-}1^{-+}$ states on $\eta \pi, \eta' \pi, b_1 \pi, f_1 \pi$ and $\rho \pi$ channel
- Experiment are not consist with each other for long time.
- In 2018, JPAC's analysis on COMPASS data(JPAC, PRL.122, 042002 (2019)) leads to a single pole around
 (m Γ) = (1564 + 80,402 + 115) MeV

 $(m, \Gamma) = (1564 \pm 89, 492 \pm 115)$ MeV

4 / 17

不同 医不足 医不足下

Formalisn 0000

Numerical Detail 00000

Previous Lattice Calculation about π_1

A.J.Woss (HSC Collaboration), PRD 103, 054502 (2021)

Lüscher's formalism :

- Finite volumn spectrum
- Lüscher's quantization condition : *det*(1 + i \varphi(1 + i \mathcal{M}))

	Thr./MeV	$ c_i^{\rm phys} /{ m MeV}$	Γ_i/MeV
ηπ	688	$0 \rightarrow 43$	$0 \rightarrow 1$
ρπ	910	$0 \rightarrow 203$	$0 \rightarrow 20$
ηπ	1098	$0 \rightarrow 173$	$0 \rightarrow 12$
$\dot{b}_1\pi$	1375	$799 \rightarrow 1559$	$139 \rightarrow 529$
$K^*\bar{K}$	1386	$0 \rightarrow 87$	$0 \rightarrow 2$
$f_1(1285)\pi$	1425	$0 \rightarrow 363$	$0 \rightarrow 24$
$\rho\omega\{{}^{1}P_{1}\}$	1552	$\lesssim 19$	≲0.03
$\rho\omega\{^{3}P_{1}\}$	1552	≲32	≲0.09
$\rho\omega\{{}^{5}P_{1}\}$	1552	≲19	≲0.03
$f_1(1420)\pi$	1560	$0 \rightarrow 245$	$0 \rightarrow 2$
			$\Gamma = \sum_i \Gamma_i = 139 \rightarrow 590$

E

3 Numerical Detail

Formalism 0●00 Numerical Detail 00000 Summary 000

Lattice Methodology(C. McNeile & C. Michael, PLB 556 (2003) 177)

$$C_{X,Y}(t) = \langle \mathcal{O}_{X}(t)\mathcal{O}_{Y}(0) \rangle$$

$$= \langle X|e^{-\hat{H}t}|Y \rangle$$

$$R_{H,AB}(t) = \frac{C_{H,AB}(t)}{\sqrt{C_{HH}(t)C_{AB,AB}(t)}}$$

$$= \frac{\langle H|AB \rangle - \langle H|\hat{H}|AB \rangle t}{\sqrt{\langle H|H \rangle \langle AB|AB \rangle}} + O(t^{2})$$

$$R_{H,AB}(t) = \frac{C_{H,AB}(t)}{\sqrt{C_{HH}(t)C_{AB,AB}(t)}}$$

$$\frac{\langle L_{eff}(t) - C_{AB}(t)}{\sqrt{C_{HH}(t)C_{AB}(t)}}$$

$$\frac{\langle L_{eff}(t) - C_{AB}(t)}{\sqrt{C_{HH}(t)C_{AB}(t)}} + O(t^{2})$$

Aug. 1, 2024

イロト イロト イヨト イヨト

୬ < ୧ 7 / 17

E

Formalism 00●0

Numerical Detail

Summary 000

Lorentz structure and transition matrix element

$$\begin{aligned} \mathcal{L}_{HAP} &= g m_H H^{\mu} A_{\mu} P \\ \mathcal{L}_{HPP'} &= i g H^{\mu} (P \overleftrightarrow{\partial}_{\mu} P') \\ \mathcal{L}_{HVP} &= \frac{g}{m_H} \epsilon_{\mu\nu\rho\sigma} (\partial^{\mu} H^{\nu}) (\partial^{\rho} V^{\sigma}) P \\ \mathcal{L}_{HVV'} &= H^{\nu} (g V^{\mu} \partial_{\mu} V'_{\nu} \\ &+ g' V'^{\mu} \partial_{\mu} V_{\nu} + g_0 V_{\mu} \overleftrightarrow{\partial}_{\nu} V'^{\mu}) \end{aligned} \qquad \begin{aligned} \overline{|\mathcal{M}(h \to AP)|^2} &= \frac{1}{3} g_{AP}^2 m_H^2 (3 + \frac{k_{ex}^2}{m_A^2}), \\ \overline{|\mathcal{M}(h \to PP)|^2} &= \frac{4}{3} g_{PP}^2 k_{ex}^2, \\ \overline{|\mathcal{M}(h \to VP)|^2} &= \frac{2}{3} g_{VP}^2 k_{ex}^2, \\ \overline{|\mathcal{M}(h \to VV)|^2} &= \frac{4}{3} g_{VV}^2 k_{ex}^2 \frac{m_H^2}{m_V^2}. \end{aligned}$$

イロト イポト イヨト イヨト

୬ < ୧୦ 8 / 17

ъ

Formalism 000●

Numerical Detail 00000 Summary 000

Flavor structure and the quark contraction

$$X = \begin{pmatrix} \frac{\pi_{X}^{0} + \eta_{X}^{(l)}}{\sqrt{2}} & \pi_{X}^{+} \\ \pi_{X}^{-} & \frac{-\pi_{X}^{0} + \eta_{X}^{(l)}}{\sqrt{2}} \end{pmatrix}$$

$$\mathcal{L}_{HAB}^{(-)} = \frac{g^{(-)}}{2} Tr(H[A, B])$$

$$\mathcal{L}_{HAB}^{(+)} = \frac{g}{2} Tr(H\{A, B\}) - g_{h} TrHTr(AB)$$

$$- g_{A} TrA Tr(BH) - g_{B} TrB Tr(HA)$$

$$+ g_{full} TrHTrATrB$$

3

590

・ロト ・四ト ・日下・日下

4 Summary

Lattice Setup

- Lattice action: Tadpole improved gauge action. Tadpole improved anisotropic Clover action for $N_f = 2$ degenerate sea quarks.
- Distillation(M. Peardon et al. PRD80(2009)054506) is used to calculate both the connected and disconnected diagrams.

IE	$N_x^3 \times N_t$	a_t^{-1} (GeV)	ξ	m_{π} (MeV)	N_V	$N_{\rm cfg}$
L16M415	$16^{3} \times 128$	7.219	5.0	417	70	401

Formalist

Numerical Detail

Summary 000

Coupling constant in $N_f = 2$ Lattice QCD

mode	g_{AB}	\bar{g}_{AB}
$\pi_1 \to b_1 \pi(\hat{k}^2 = 0)$	4.41(8)	4.50(18)
$\pi_1 \to b_1 \pi(\hat{k}^2 = 1)$	4.59(10)	
$\pi_1 \to f_1 \pi(\hat{k}^2 = 0)$	0.80(5)	0.98(26)
$\pi_1 \to f_1 \pi(\hat{k}^2 = 1)$	1.16(11)	
$\pi_1 \to \rho \pi (\hat{k}^2 = 1)$	4.37(6)	4.37(6)
$\eta_1 \to a_1 \pi (\hat{k}^2 = 0)$	1.10(14)	1.43(50)
$\eta_1 \to a_1 \pi (\hat{k}^2 = 1)$	1.76(19)	
$\eta_1 \to f_1 \eta(\hat{k}^2 = 0)$	2.24(62)	2.41(87)
$\eta_1 \to f_1 \eta(\hat{k}^2 = 1)$	2.58(77)	
$\eta_1 \to \rho \rho(\hat{k}^2 = 1)$	2.76(23)	2.93(50)
$\eta_1 \to \rho \rho(\hat{k}^2 = 2)$	3.10(42)	
	・ロット 4 啓 マネルマンス	≣) ≣ <i>1</i> 0९
n $N_f = 2$ Lattice QCD	Aug. 1, 2024	12 / 1

110	Lives	
IVIO	uva	non
00	00	

Numerical Detail

Discussion of 3 flavor decay width

- SU(3) flavor symmetric: quartet → nonet
- The mixing of singlet and octet, *K*₁ in 1⁺⁺(1⁺⁻) octet are set according to previous Lattice or Phenomenological study.

$$\begin{pmatrix} \eta_1^{(L)} \\ \eta_1^{(H)} \end{pmatrix} = \begin{pmatrix} \cos\theta_h & -\sin\theta_h \\ \sin\theta_h & \cos\theta_h \end{pmatrix} \begin{pmatrix} \eta_1^{(8)} \\ \eta_1^{(1)} \end{pmatrix}$$
$$\begin{pmatrix} K_1(1270) \\ K_1(1400) \end{pmatrix} = \begin{pmatrix} \cos\theta_K & \sin\theta_K \\ -\sin\theta_K & \cos\theta_K \end{pmatrix} \begin{pmatrix} K_{1B} \\ K_{1A} \end{pmatrix}$$

• $\theta_P = -10^\circ, \theta_V = -54.7^\circ, \theta_A = -34^\circ, \theta_h = 32.1^\circ, \theta_K = 45^\circ$

13 / 17

化口水 化晶体 化医水化医水

Result(preliminary)

mode	g_{AB}	decay width
$\pi_1 \rightarrow b_1 + \pi$	4.46 ± 0.11	288.96 ± 14.77
$\pi_1 \rightarrow f_1(1285) + \pi$	0.72 ± 0.49	6.66 ± 9.07
$\pi_1 \to f_1(1420) + \pi$	0.34 ± 0.24	0.81 ± 1.17
$\pi_1 \rightarrow \rho + \pi$	4.37 ± 0.06	48.33 ± 1.30
$\pi_1 \rightarrow K^* + K$	3.09 ± 0.04	8.01 ± 0.22
$\pi_1 \rightarrow All$		352.77 ± 17.84
$\eta_1^{(L)} \rightarrow a_1 + \pi$	1.17 ± 0.86	28.99 ± 42.86
$\eta_{1}^{(L)} \to f_{1}(1285) + \eta$	0.38 ± 0.28	0.80 ± 1.20
$\eta_1^{(L)} \to K_1(1270) + K$	3.28 ± 0.09	122.02 ± 6.53
$\eta_1^{(L)} \rightarrow \rho + \rho$	2.55 ± 0.26	37.97 ± 7.76
$\eta_1^{(L)} \rightarrow \omega + \omega$	1.47 ± 0.15	11.59 ± 2.37
$\eta_1^{(L)} \rightarrow K^* + K^*$	1.03 ± 0.14	1.25 ± 0.34
$\eta_1^{(L)} \rightarrow K^* + K$	4.53 ± 0.06	34.46 ± 0.93
$\eta_1^{(L)} \rightarrow All$		237.09 ± 47.32
$\eta_1^{(H)} \rightarrow a_1 + \pi$	0.52 ± 0.54	8.92 ± 18.56
$\eta_1^{(H)} \to f_1(1285) + \eta$	0.85 ± 0.43	17.57 ± 17.72
$\eta_1^{(H)} \rightarrow f_1(1420) + \eta$	1.26 ± 0.52	29.23 ± 24.02
$\eta_{1}^{(H)} \rightarrow K_{1}(1270) + K$	2.16 ± 0.18	126.35 ± 21.18
$\eta_1^{(H)} \to K_1(1420) + K$	2.16 ± 0.18	98.20 ± 16.46
$\eta_1^{(H)} \rightarrow \rho + \rho$	1.27 ± 0.17	33.58 ± 9.03
$\eta_1^{(H)} \rightarrow \omega + \omega$	0.73 ± 0.10	10.66 ± 2.87
$\eta_1^{(H)} \rightarrow \phi + \phi$	2.10 ± 0.22	8.02 ± 1.65
$\eta_1^{(H)} \rightarrow K^* + K^*$	2.20 ± 0.24	87.93 ± 19.07
$\eta_1^{(H)} \rightarrow K^* + K$	2.85 ± 0.04	26.30 ± 0.71
$\eta_1^{(H)} \rightarrow \text{All}$		446.78 ± 95.31

Summary 000

Light 1^{-+} Hybrid Decay in $N_f = 2$ Lattice QCD

Aug. 1, 2024

୬ < ୍ 14 / 17

æ

3 Numerical Detail

- Light 1^{-+} meson decay property is calculated with MMP method. This is the first lattice calculation of η_1 decay.
- π_1 decay is calculated to be dominated by $b_1\pi$ channel, which is as the expectation of previous calculation with Lüscher's formalism.
- Not a small contribution of *VV* channel is shown in η_1 decay, which is expected to be suppressed in Flux tube model.

16 / 17

590

17 / 17

Light 1^{-+} Hybrid Decay in $N_f = 2$ Lattice QCD

