

Towards glueball scattering in lattice Yang-Mills theory

Maxwell T. Hansen

August 1st, 2024

with Mattia Bruno and Antonio Rago

Scattering glue balls in Yang-Mills theory

In Yang-Mills theory, low-lying spectrum consists of stable glue balls

 $\mathcal{L}_{\rm YM} = -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu}$

Thinking in analogy to pions in QCD: Can we use standard finite-volume methods to calculate glue-ball scattering amplitudes?

Scattering glue balls in Yang-Mills theory

In Yang-Mills theory, low-lying spectrum consists of stable glue balls

 $\mathcal{L}_{\rm YM} = -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu}$

Thinking in analogy to pions in QCD: Can we use standard finite-volume methods to calculate glue-ball scattering amplitudes?

Motivations

constrain strongly-interacting dark-matter models

test S-matrix-bootstrap predictions

better understand QCD glue balls in a theoretically clean environment

experimental evidence that X(2370) has quantum numbers 0^{-+} (from $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$) [BES III (2024)]

12

Challenges for scattering glue balls

- **IDENTIFY and SET UP:** Glue-ball correlators suffer from a signal-to-noise problem
- **b** Require a large and varied set of operators to reliably extract excited states
- Window problem: finite-volume must be...

large enough to ignore unwanted effects small enough to resolve effects of interest

related to fact that YM = a single-scale theory

Challenges for scattering glue balls

- **IDENTIFY and SET UP:** Glue-ball correlators suffer from a signal-to-noise problem
- **b** Require a large and varied set of operators to reliably extract excited states
- Window problem: finite-volume must be...

large enough to ignore unwanted effects small enough to resolve effects of interest related to fact that YM = a single-scale theory

- Missing the analogous quark model \rightarrow less obvious operator construction
- Finite-volume spectrum is more complicated then, say pions one-, two-, three-particle energies have the same quantum numbers di-torelon states could contaminate spectrum (more later)

geometric function scattering $\rho \cot \delta(s_n) = -F(E_n, \vec{P}, L)$ equal at finite-volume energies $\overline{\vec{P} = [000]} \left| T_1^- \right|$ $\vec{P} = [111] \| A_1$ 0.20 0.20 0.18 0.18 0.16 0.16 0.14 0.14 20 24 16 16 20 24

[Lüscher, (1989)] - [Dudek, Edwards, Thomas, (2013)]

[Lüscher, (1989)] - [Dudek, Edwards, Thomas, (2013)]

[Lüscher, (1989)] - [Dudek, Edwards, Thomas, (2013)]

[Lüscher, (1989)] - [Dudek, Edwards, Thomas, (2013)]

>>> Goal: Calculate finite-volume energies in Yang-Mills to extract

$$GG \rightarrow GG$$
 amplitudes $(G = 0^{++} \text{ ground state})$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

same quantum numbers as local 0^{++} states

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

same quantum numbers as local 0^{++} states

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

same quantum numbers as local 0^{++} states

>>> torelon = closed flux tube, wrapping spatial direction $E_{tor}(L) = \sigma L + \mu + \mathcal{O}(1/L)$

>> di-torelon = two such flux tubes in opposite directions

$$E_{\text{di-tor}}(L) = 2\sigma L + 2\mu + \mathcal{O}(1/L)$$

same quantum numbers as local 0^{++} states

Set-up

>>>> Anisotropic Wilson plaquette action ($a_t \neq a_s$)

>>>> Renormalised anisotropy tuned via spatial-spatial and spatial-temporal energy density

$$\xi_R(\beta,\xi) = \frac{a_{\rm s}(\beta,\xi)}{a_{\rm t}(\beta,\xi)} = 4 \qquad [BMW]$$

>>> Multi-level algorithm (described more on next slide)

Set-up

- >>> Anisotropic Wilson plaquette action ($a_t \neq a_s$)
- >>>> Renormalised anisotropy tuned via spatial-spatial and spatial-temporal energy density

$$\xi_R(\beta,\xi) = \frac{a_{\rm s}(\beta,\xi)}{a_{\rm t}(\beta,\xi)} = 4 \qquad \text{[BMW]}$$

- >>> Multi-level algorithm (described more on next slide)
- >>> All ensembles tuned... so far only vertical pink line has been generated

$$t^2 \langle E(t) \rangle \bigg|_{t=t_0} = 0.3$$

Multi-level algorithm

>>> Update parts of lattice to improve signal at fixed computational cost

[Lüscher and Weisz, (2001)] - [Meyer (2003,2004)] - [Ce, Giusti, Schaefer (2017)] - [Barca et al. (2024)]

Multi-level algorithm

>>> Update parts of lattice to improve signal at fixed computational cost

$$\begin{split} N_{1} \text{ updates for each} & N_{0} \text{ updates} \\ & N_{1} \text{ updates for each} \\ & \langle \mathcal{O}_{x}^{(1)} \mathcal{O}_{y}^{(2)} \rangle = \sum_{A \in \Omega} p(\mathcal{A}) \left(\sum_{X \in \Omega_{\text{left}}} p_{\mathcal{A}}(X) \mathcal{O}_{x}^{(1)}[\mathcal{A}, X] \right) \left(\sum_{Y \in \Omega_{\text{right}}} p_{\mathcal{A}}(Y) \mathcal{O}_{y}^{(2)}[\mathcal{C}, Y] \right) \\ & = \sum_{A \in \Omega} p(\mathcal{A}) \left\langle \mathcal{O}_{x}^{(1)} \rangle_{\text{left}, \mathcal{A}} \left\langle \mathcal{O}_{x}^{(2)} \right\rangle_{\text{right}, \mathcal{A}} \end{split}$$

>>>> Ideally variance should scale as $N_1^2 N_0$ (and cost as $N_1 N_0$)

[Lüscher and Weisz, (2001)] - [Meyer (2003,2004)] - [Ce, Giusti, Schaefer (2017)] - [Barca et al. (2024)]

Theoretical understanding of scaling

>>> Variance (and uncertainty of variance) of the one point off the boundary

Theoretical understanding of scaling

>>> Variance (and uncertainty of variance) of the one point off the boundary

Operator construction

General approach = many shapes of Wilson loops + smearing + blocking

Operator construction

General approach = many shapes of Wilson loops + smearing + blocking

Project to all good finite-volume quantum numbers as usual

>>> Also have two-trace operators to extract "two-glue-ball-like" excited states

$$\sum_{\boldsymbol{x},\boldsymbol{y}} e^{-i\boldsymbol{p}\cdot\boldsymbol{x}-i\boldsymbol{k}\cdot\boldsymbol{y}} \operatorname{tr}[W^{(1)}(\tau,\boldsymbol{x})]\operatorname{tr}[W^{(2)}(\tau,\boldsymbol{y})]$$

Extracting energies

>>> Use variational method to extract the ground state energy

>>> Volume dependence of the ground state

Interpreting the ground state *L* dependence

 \gg Lüscher stable-states paper relates L dependence to trilinear coupling λ

$$\Delta m = -\frac{3}{16\pi m^2 L} \left\{ \lambda^2 e^{-\frac{\sqrt{3}}{2}mL} + \frac{m}{\pi} \int_{-\infty}^{\infty} dy e^{-\sqrt{m^2 + y^2}L} F(iy) + O(e^{-\bar{m}L}) \right\}$$

[Lüscher (1986)]

WARNING: If λ is too large, subleading exponentials could be important (also F contains terms proportional to λ^2)

$$\rightarrow$$

Interpreting the ground state *L* dependence

 \gg Lüscher stable-states paper relates L dependence to trilinear coupling λ

$$\Delta m = -\frac{3}{16\pi m^2 L} \left\{ \lambda^2 e^{-\frac{\sqrt{3}}{2}mL} + \frac{m}{\pi} \int_{-\infty}^{\infty} dy e^{-\sqrt{m^2 + y^2}L} F(iy) + O(e^{-\bar{m}L}) \right\}$$

[Lüscher (1986)]

WARNING: If λ is too large, subleading exponentials could be important (also F contains terms proportional to λ^2)

>>> Method was already used to estimate the coupling in 1984

$$\frac{\lambda}{m} = 50 \pm 8$$

[de Forcrand et al., (1984)]

Interpreting the ground state *L* dependence

 \gg Lüscher stable-states paper relates L dependence to trilinear coupling λ

$$\Delta m = -\frac{3}{16\pi m^2 L} \left\{ \lambda^2 e^{-\frac{\sqrt{3}}{2}mL} + \frac{m}{\pi} \int_{-\infty}^{\infty} dy e^{-\sqrt{m^2 + y^2}L} F(iy) + O(e^{-\bar{m}L}) \right\}$$

[Lüscher (1986)]

WARNING: If λ is too large, subleading exponentials could be important (also F contains terms proportional to λ^2)

>> Method was already used to estimate the coupling in 1984

 $\frac{\lambda}{m} = 50 \pm 8$

[de Forcrand et al., (1984)]

Can also sum enhanced exponentials by continuing scattering-states formula below threshold

[Lüscher, (1986)]

Requires left-hand cut formalism

[MTH and Raposo, (2024)]

>>> Our interpretation = matching the model and coupling to de Forcrand et al. gives a good description

>>> For these parameters sub-leading exponentials could significantly change the story

Conclusions and next steps

>>> Presented results for 0^{++} ground state vs L:

 $E_0^{[A_1^{++}]}(L)$

>> L-dependence gives a first probe of scattering: tri-linear coupling

>>> S-matrix bootstrap also constrains $\lambda/m < 200$

[Guerrieride Forcrand et al., (2023)]

Next steps (most ambitious scenario)

extract excited-state energies... in moving frames... for various quantum numbers

determine and publish fully controlled, continuum-limit, finite-volume energies

analyse two- (and three-particle energies) and predict scattering amplitudes

Backup slides

Di-torelon stability

GEVP improvement

