Results on meson-meson scattering at large $N_{\rm c}$

Jorge Baeza-Ballesteros

In collaboration with P. Hernández and F. Romero-López

IFIC, University of Valencia-CSIC

Lattice 2024 - 1st August 2024

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2016, 2020]
- Meson-meson scattering [JBB et al. 2022 and in preparation]

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2016, 2020]
- Meson-meson scattering [JBB et al. 2022 and in preparation] This talk

$\pi\pi$ at Large $N_{\rm C}$	$\pi\pi$ with $N_{ m f}$ = 4			
0000	000	00	000000	
Large $N_{\rm c}$ ir	phenomenol	ogy		

Large $N_{\rm c}$ + Unitarized ChPT $\longrightarrow N_{\rm c}$ scaling of resonances [Peláez 2004]

$\pi\pi$ at Large $N_{\rm C}$	$\pi\pi$ with $N_{ m f}=4$			
0000	000	00	000000	
Large N _c	in phenomenol	ogy		

Large $N_{\rm c}$ + Unitarized ChPT $\longrightarrow N_{\rm c}$ scaling of resonances [Peláez 2004]

Neglects subleading N_c effects

ππ at Large N _C 00●0	$\pi\pi$ with $N_{ m f}=4$	Lattice simulations	$\pi\pi$ phase shift 000000	Summary O
Tetraquarks	at large N_c			

Recent controversy about the existence of tetraquarks at large N_c

- [Witten 1979, Coleman 1980]: Tetraquarks do not exist at large N_c
- > [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- \blacktriangleright [Knetch, Peris 2013]: $\varGamma\sim 1/N_c$ or $\varGamma\sim 1/N_c^2$ depending on the flavor content
- > [Cohen, Lebec 2014]: Tetraquarks can only exist with $\Gamma \sim 1/N_c^2$ for fundamental fermions

$\pi\pi$ at Large N_{C}	$\pi\pi$ with $N_{\rm f}=4$	Lattice simulations	$\pi\pi$ phase shift	Summary
0000	000	00	000000	
Tetraquar	ks at large N_c			

Recent controversy about the existence of tetraquarks at large N_c

- [Witten 1979, Coleman 1980]: Tetraquarks do not exist at large N_c
- > [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- \blacktriangleright [Knetch, Peris 2013]: $\varGamma\sim 1/N_c$ or $\varGamma\sim 1/N_c^2$ depending on the flavor content
- > [Cohen, Lebec 2014]: Tetraquarks can only exist with $\Gamma \sim 1/N_c^2$ for fundamental fermions

Lattice QCD can allow us to directly answer this question

Macon mo	con coattoring	at large M		
0000	000	00	000000	0
$\pi\pi$ at Large N_{C}	$\pi\pi$ with $N_{\rm f}=4$	Lattice simulations		

Nieson-meson scattering at large N_c

This talk: *N*_c scaling of meson-meson scattering

Meson-meson scattering at large N_c

		Δ. Ι. Ι Δ <i>ι</i>		
0000	000	00	000000	0
$\pi\pi$ at Large $N_{\rm C}$	$\pi\pi$ with $N_{ m f}=4$	Lattice simulations		

Meson-meson scattering at large N_c

$$m{N_{f}=4}~(m_u=m_d=m_s=m_c)$$

Used to study $K
ightarrow\pi\pi$
[Donini et al. 2020]

Meson-mesor	n scattering at	t large <i>N</i> c		
0000	•00	00	000000	
$\pi\pi$ at Large N_c	$\pi\pi$ with $N_{\rm f}=4$	Lattice simulations	$\pi\pi$ phase shift	Summary

$$m{N_{f}=4}~(m_{u}=m_{d}=m_{s}=m_{c})$$

Used to study $K
ightarrow\pi\pi$
[Donini et al. 2020]

Degenerate mesons pions $M_{\pi} = M_{\mathcal{K}} = M_D = M_{\eta}$

7 scattering channels

$$N_{\rm f} = 4 \ (m_u = m_d = m_s = m_c)$$
Used to study $K \to \pi\pi$
[Donini et al. 2020]
$$\longrightarrow Degenerate mesons pions$$

$$M_{\pi} = M_K = M_D = M_{\eta}$$
7 scattering channels

 $15 \otimes 15 = \frac{\text{even } J}{\pi^{+}\pi^{+}} \xrightarrow{\text{odd } J} \oplus \frac{\text{odd } J}{45 (SA)} \oplus \frac{\text{odd } J}{45 (AS)} \oplus \frac{\text{even } J}{20 (AA)} \oplus 15 \oplus 15 \oplus 1$ $D_{s}^{+}\pi^{+} - D^{+}K^{+}$

$$C_{SS} = D - C + (p_1 \leftrightarrow p_2)$$
$$C_{AA} = D + C + (p_1 \leftrightarrow p_2)$$
$$C_{SA} = D - C - (p_1 \leftrightarrow p_2)$$
$$C_{AS} = D + C - (p_1 \leftrightarrow p_2)$$

Meson-meson	scattering at	large N.		
	•00			
$\pi\pi$ at Large N_{c}	$\pi\pi$ with $N_{\rm f}=4$	Lattice simulations	$\pi \pi$ phase shift	Summary

 $15 \otimes 15 = \frac{\text{even } J}{\pi^{+}\pi^{+}} \xrightarrow{\text{odd } J} \oplus \frac{\text{odd } J}{45 (SA)} \oplus \frac{\text{odd } J}{45 (AS)} \oplus \frac{\text{even } J}{20 (AA)} \oplus 15 \oplus 15 \oplus 1$ $D_{s}^{+}\pi^{+} - D^{+}K^{+}$

 $C_{SS} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$ $C_{SA} = D - C - (p_1 \leftrightarrow p_2)$ $C_{AS} = D + C - (p_1 \leftrightarrow p_2)$

Large
$$N_{c}$$
 counting
 $\mathcal{M}^{SS,AA} = \mp \frac{1}{N_{c}} \left(a + b \frac{N_{f}}{N_{c}} \pm c \frac{1}{N_{c}} \right) + \dots$

 $a, b, c \sim \mathcal{O}(1)$ constants

$\pi\pi$ at Large N_{C}	$\pi \pi$ with $N_{f} = 4$ 000	Lattice simulations 00	$\pi\pi$ phase shift 000000	
$\pi\pi$ scattering	g lengths			

Previous work [JBB et al. 2022]: Pion-pion scattering near threshold

Compare to LO ChPT: $M_{\pi}a_0^{SS,AA} = \mp \frac{M_{\pi}^2}{16\pi F_{\pi}^2}$ $k \cot \delta_0 = \frac{1}{a_0} + \dots$

ππ at Large N _C 0000	$\pi\pi$ with $N_{\mathrm{f}}=4$	Lattice simulations 00	$\pi \pi$ phase shift 000000	Summary O
$\pi\pi$ scattering	; at large <i>N</i> c			

AA channel is attractive \rightarrow Possible tetraquark

$\pi\pi$ at Large $N_{\rm C}$ 0000	$\pi\pi$ with $N_{\mathrm{f}}=4$	Lattice simulations	$\pi\pi$ phase shift 000000	
$\pi\pi$ scattering	g at large <i>N</i> c			

AA channel is attractive \rightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{l} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{c\overline{s}0}^{++}(2900) \text{ and } T_{c\overline{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow AA \text{ channel} \\ J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus \dots \\ D = 0: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 0$$

Below $D_s^* \rho$ threshold \longrightarrow Described as meson-meson bound states

$\pi\pi$ at Large $N_{\rm C}$ 0000	$\pi\pi$ with $N_{\mathrm{f}}=4$	Lattice simulations	$\pi\pi$ phase shift 000000	
$\pi\pi$ scattering	g at large <i>N</i> c			

AA channel is attractive \rightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{cs0}^{++}(2900) \text{ and } T_{cs0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow AA \text{ channel}$$
$$J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus \dots$$

Below $D_s^* \rho$ threshold \longrightarrow Described as **meson-meson bound states**

Goal: N_c scaling of meson-meson scattering + tetraquark

$\pi\pi$ at Large N_{C}	$\pi\pi$ with $N_{ m f}=4$	Lattice simulations	$\pi\pi$ phase shift	Summary	
0000	000	•0	000000		
Lattice computations					

 $N_{
m c}=3,4,5,6$ ensembles with $a\sim 0.075$ fm and $M_{\pi}\sim 590$ MeV

Lattice simulations are performed using HiRep [Del Debbio et al. 2010]

Operator set: $\pi\pi + \rho\rho (M_{\rho}/M_{\pi} \approx 1.7 - 2) + \text{local tetraquark}$

$$T(\boldsymbol{P}) \propto \sum_{\boldsymbol{x} \in \tilde{\Lambda}} e^{-i\boldsymbol{P}\boldsymbol{x}} T(\boldsymbol{x})$$

$$T(x)\sim ar{d}arGamma_1 u\,ar{s}arGamma_2 c -ar{s}arGamma_1 u\,ar{d}arGamma_2 c$$

Quantum numbers of AA channel

We study the **effect of different operators** for $N_c = 3$:

We study the **effect of different operators** for $N_c = 3$:

We study the **effect of different operators** for $N_c = 3$:

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

 $\begin{array}{cccc} \pi \pi & \text{at Large } N_{c} & \pi \pi & \text{with } N_{f} = 4 & \text{Lattice simulations} & \pi \pi & \text{phase shift} & \text{Summary} \\ 0 & 0 & 0 & 0 & 0 \\ \hline \text{Scattering phase shift: } SS & \text{channel} \end{array}$

Results present the **expected** N_c scaling: $\delta_0 \propto N_c^{-1}$

We are sensitive to subleading N_c corrections

We study the N_c scaling of scattering observables

We study the N_c scaling of scattering observables

$\pi\pi$ at Large $N_{\rm C}$ 0000	$\pi\pi$ with $N_{ m f}=4$ 000	Lattice simulations	$\pi\pi$ phase shift 000000	Summary •
Summary an	d outlook			

Goal: Large N_c scaling of meson-meson interactions

- > We have characterized the $\pi\pi$ scattering amplitudes in the SS and AA channel, and are sensitive to subleading N_c effects
- > We find a virtual bound state in the AA channel for $N_c = 3$
- > We find very weak interactions in the AS channel, as expected

Next steps: Match to ChPT, $\rho\rho - \pi\pi$, higher partial waves...

$\pi\pi$ at Large N_{C}	$\pi \pi$ with $N_{ m f} = 4$	Lattice simulations	$\pi\pi$ phase shift 000000	Summary
Summary an	d outlook			

Goal: Large N_c scaling of meson-meson interactions

- > We have characterized the $\pi\pi$ scattering amplitudes in the SS and AA channel, and are sensitive to subleading N_c effects
- > We find a virtual bound state in the AA channel for $N_c = 3$
- > We find very weak interactions in the AS channel, as expected

Next steps: Match to ChPT, $\rho\rho - \pi\pi$, higher partial waves...

Thank you for your attention!

Eigenvectors of the GEVP provide intuition on the effect of each operator

AA channel, A_1^+ irrep, rest frame

We observe significant N_c dependence of meson masses (no $\pi\pi$ mixing)

Average plateaux using Akaike Information Criterion [Jay, Neil 2020]

$$w_i \propto \exp\left[-rac{1}{2}\left(\chi^2 - 2N + 2N_{\sf par}
ight)
ight]$$

Reduces human bias

Allows to automatically find plateaux for accurate data

Virtual bound state for $N_{\rm c} = 3$

We find a **virtual bound state** for $N_c = 3$

