Results on meson-meson scattering at $\text{large } N_c$

Jorge Baeza-Ballesteros

In collaboration with P. Hernández and F. Romero-López

IFIC, University of Valencia-CSIC

Lattice 2024 - 1st August 2024

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K \to (\pi \pi)_{I=0.2}$ [Donini et al. 2016, 2020]
- Meson-meson scattering [JBB et al. 2022 and in preparation]

Long-term goal: Understand subleading N_c effects in the lattice:

- Pion mass and decay constant [Hernández et al. 2019]
- $K \to (\pi \pi)_{I=0.2}$ [Donini et al. 2016, 2020]
- \bullet Meson-meson scattering [JBB et al. 2022 and in preparation] \rightarrow This talk

Large N_c + Unitarized ChPT $\longrightarrow N_c$ scaling of resonances [Peláez 2004]

Large N_c + Unitarized ChPT $\longrightarrow N_c$ scaling of resonances [Peláez 2004]

Neglects subleading N_c effects

Recent controversy about the existence of tetraquarks at large N_c

- ▶ [Witten 1979, Coleman 1980]: Tetraguarks do not exist at large N_c
- ► [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- ▶ [Knetch, Peris 2013]: $\mathit{\Gamma} \sim 1/N_{\mathrm{c}}$ or $\mathit{\Gamma} \sim 1/N_{\mathrm{c}}^2$ depending on the flavor content
- ▶ [Cohen, Lebec 2014]: Tetraquarks can only exist with $\varGamma\sim 1/N_\text{c}^2$ for fundamental fermions

Recent controversy about the existence of tetraquarks at large N_c

- ▶ [Witten 1979, Coleman 1980]: Tetraguarks do not exist at large N_c
- ► [Weinberg 2013]: Tetraquarks can exist at large N_c , with $\Gamma \sim 1/N_c$ (as ordinary resonances)
- ▶ [Knetch, Peris 2013]: $\mathit{\Gamma} \sim 1/N_{\mathrm{c}}$ or $\mathit{\Gamma} \sim 1/N_{\mathrm{c}}^2$ depending on the flavor content
- ▶ [Cohen, Lebec 2014]: Tetraquarks can only exist with $\varGamma\sim 1/N_\text{c}^2$ for fundamental fermions

Lattice QCD can allow us to directly answer this question

This talk: N_c scaling of meson-meson scattering

 $N_f = 4$ $(m_u = m_d = m_s = m_c)$ Used to study $K \to \pi\pi$ [Donini et al. 2020]

 $N_f = 4$ ($m_u = m_d = m_s = m_c$) Used to study $K \to \pi\pi$ [Donini et al. 2020]

Degenerate mesons pions $M_{\pi} = M_K = M_D = M_n$

7 scattering channels

$N_f = 4$	$m_u = m_d = m_s = m_c$	Degenerate mesons pions
Used to study $K \rightarrow \pi \pi$	$M_{\pi} = M_K = M_D = M_{\eta}$	
Domain et al. 2020]	7 scattering channels	

even J odd J odd J even J $15 \otimes 15 = 84 (SS) \oplus 45 (SA) \oplus 45 (AS) \oplus 20 (AA) \oplus 15 \oplus 15 \oplus 1$ $\pi^+\pi$ $+$ D $S_s^{+}\pi^+ - D^+K^+$

$$
C_{SS} = D - C + (p_1 \leftrightarrow p_2)
$$

\n
$$
C_{AA} = D + C + (p_1 \leftrightarrow p_2)
$$

\n
$$
C_{SA} = D - C - (p_1 \leftrightarrow p_2)
$$

\n
$$
C_{AS} = D + C - (p_1 \leftrightarrow p_2)
$$

$N_f = 4$	$m_u = m_d = m_s = m_c$	Degenerate mesons pions
Used to study $K \rightarrow \pi \pi$	$M_{\pi} = M_K = M_D = M_{\eta}$	
[Domain et al. 2020]	7 scattering channels	

even J odd J odd J even J $15 \otimes 15 = 84 \, (SS) \oplus 45 \, (SA) \oplus 45 \, (AS) \oplus 20 \, (AA) \oplus 15 \oplus 15 \oplus 1$ $\pi^+\pi$ $+$ D $S_s^{+}\pi^+ - D^+K^+$

 $C_{SS} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$ $C_{SA} = D - C - (p_1 \leftrightarrow p_2)$ $C_{AS} = D + C - (p_1 \leftrightarrow p_2)$

Large
$$
N_c
$$
 counting
\n
$$
\mathcal{M}^{SS,AA} = \mp \frac{1}{N_c} \left(a + b \frac{N_f}{N_c} \pm c \frac{1}{N_c} \right) + ...
$$

a, b, $c \sim \mathcal{O}(1)$ constants

Previous work [JBB et al. 2022]: Pion-pion scattering near threshold

Compare to LO ChPT: $M_{\pi}a_0^{SS,AA} = \pm$ M_π^2 $16\pi F_\pi^2$ k cot $\delta_0 = \frac{1}{a_0} + ...$

AA channel is attractive \longrightarrow Possible tetraquark

AA channel is attractive \longrightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$
J = 0: \frac{T_{cs0}^{0}(2900) \text{ in } D^{+} K^{-}}{T_{cs0}^{++}(2900) \text{ and } T_{cs0}^{0}(2900) \text{ in } D_{s}^{\pm} \pi^{+}} \longrightarrow \textbf{AA channel}
$$

$$
J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+} K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus ...
$$

Below $D_s^* \rho$ threshold \longrightarrow Described as meson-meson bound states

AA channel is attractive \longrightarrow Possible tetraquark

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$
J = 0: \begin{array}{l} T_{cs0}^{0}(2900) \text{ in } D^{+} K^{-} \\ T_{c50}^{++}(2900) \text{ and } T_{c50}^{0}(2900) \text{ in } D_{s}^{\pm} \pi^{+} \end{array} \longrightarrow \text{AA channel}
$$

$$
J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+} K^{-} \longrightarrow 84 \oplus 45(SA) \oplus 45(AS) \oplus 20 \oplus ...
$$

Below $D_s^* \rho$ threshold \longrightarrow Described as meson-meson bound states

Goal: N_c scaling of meson-meson scattering $+$ tetraquark

 $N_c = 3, 4, 5, 6$ ensembles with a ~ 0.075 fm and $M_\pi \sim 590$ MeV

Lattice simulations are performed using **HiRep** [Del Debbio et al. 2010]

Operator set: $\pi \pi + \rho \rho \left(M_{\rho} / M_{\pi} \approx 1.7 - 2 \right) +$ local tetraquark

 \triangleright Local tetraquark operators \rightarrow Point sources in a sparse lattice Λ [NPLQCD 2019]

$$
\mathcal{T}(\boldsymbol{P}) \propto \sum_{\boldsymbol{x} \in \tilde{\Lambda}} e^{-i \boldsymbol{P} \boldsymbol{x}} \, \mathcal{T}(\boldsymbol{x})
$$

$$
\mathcal{T}(x)\sim \bar{d}\varGamma_1 u \, \bar{s}\varGamma_2 c - \bar{s}\varGamma_1 u \, \bar{d}\varGamma_2 c
$$

Quantum numbers of AA channel

We study the **effect of different operators** for $N_c = 3$:

We study the **effect of different operators** for $N_c = 3$:

We study the **effect of different operators** for $N_c = 3$:

π [at Large](#page-1-0) N_c ππ [with](#page-11-0) $N_f = 4$ [Lattice simulations](#page-19-0) **ππ [phase shift](#page-23-0) [Summary](#page-33-0)** Summary Finite-volume scattering formalism

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

π [at Large](#page-1-0) N_c ππ [with](#page-11-0) $N_f = 4$ [Lattice simulations](#page-19-0) **ππ [phase shift](#page-23-0) [Summary](#page-33-0)** Summary Finite-volume scattering formalism

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

ππ [at Large](#page-1-0) N_c ππ [with](#page-11-0) $N_f = 4$ [Lattice simulations](#page-19-0) **ππ [phase shift](#page-23-0) [Summary](#page-33-0)** Summary Scattering phase shift: SS channel

ππ [at Large](#page-1-0) N_c ππ [with](#page-11-0) $N_f = 4$ [Lattice simulations](#page-19-0) **ππ [phase shift](#page-23-0) [Summary](#page-33-0)** Summary Scattering phase shift: AA channel

ππ [at Large](#page-1-0) N_c ππ [with](#page-11-0) $N_f = 4$ [Lattice simulations](#page-19-0) **ππ [phase shift](#page-23-0) [Summary](#page-33-0)** Summary Scattering phase shift: AA channel

Results present the $\boldsymbol{\mathrm{expected}}$ $\boldsymbol{N_{\mathrm{c}}}$ scaling: $\delta_{0}\propto N_{\mathrm{c}}^{-1}$

We are sensitive to subleading N_c corrections

We study the N_c scaling of scattering observables

We study the N_c scaling of scattering observables

Goal: Large N_c scaling of meson-meson interactions

- \triangleright We have characterized the $\pi\pi$ scattering amplitudes in the SS and AA channel, and are sensitive to subleading N_c effects
- \blacktriangleright We find a virtual bound state in the AA channel for $N_c = 3$
- \triangleright We find very weak interactions in the AS channel, as expected

Next steps: Match to ChPT, $\rho \rho - \pi \pi$, higher partial waves...

Goal: Large N_c scaling of meson-meson interactions

- \triangleright We have characterized the $\pi\pi$ scattering amplitudes in the SS and AA channel, and are sensitive to subleading N_c effects
- \blacktriangleright We find a virtual bound state in the AA channel for $N_c = 3$
- ➤ We find very weak interactions in the AS channel, as expected

Next steps: Match to ChPT, $\rho \rho - \pi \pi$, higher partial waves...

Thank you for your attention!

Eigenvectors of the GEVP provide intuition on the effect of each operator

 AA channel, A_1^+ irrep, rest frame

We observe significant N_c dependence of meson masses (no $\pi\pi$ mixing)

Average plateaux using Akaike Information Criterion [Jay, Neil 2020]

$$
w_i \propto \exp\left[-\frac{1}{2}\left(\chi^2 - 2N + 2N_{\text{par}}\right)\right]
$$

▶ Reduces human bias

▶ Allows to automatically find plateaux for accurate data

Virtual bound state for $N_c = 3$

We find a **virtual bound state** for $N_c = 3$

