

Contribution ID: 14 Type: Talk

Study of the pion-mass dependence of ρ -meson properties in lattice QCD

Monday, 29 July 2024 11:15 (20 minutes)

We collect spectra extracted in the $I=\ell=1$ $\pi\pi$ sector provided by various lattice QCD collaborations and study the m_π dependence of ρ -meson properties using Hamiltonian Effective Field Theory (HEFT).In this unified analysis, the coupling constant and cutoff mass, characterizing the $\rho-\pi\pi$ vertex, are both found to be weakly dependent on m_π , while the mass of the bare ρ , associated with a simple quark-model state, shows a linear dependence on m_π^2 . Both the lattice results and experimental data can be described well.

Drawing on HEFT's ability to describe the pion mass dependence of resonances in a single formalism, we map the dependence of the phase shift as a function of m_{π} , and expose interesting discrepancies in contemporary lattice QCD results.

Primary author: YU, Kang (University of Chinese Academy of Sciences, Beijing)

Co-authors: Prof. THOMAS, Anthony W. (Special Research Centre for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia); LEINWEBER, Derek B. (Special Research Centre for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia); Prof. WU, Jiajun (University of Chinese Academy of Sciences, Beijing); Dr LI, Yan (Department of Physics, University of Cyprus, 20537 Nicosia, Cyprus)

Presenter: YU, Kang (University of Chinese Academy of Sciences, Beijing)

Session Classification: Hadronic and nuclear spectrum and interactions

Track Classification: Hadronic and Nuclear Spectrum and Interactions