Three-particle formalism for multiple channels: the $\eta\pi\pi$ + KK π system in isosymmetric QCD

Steve Sharpe University of Washington

Based on work with Zack Draper, arXiv:2403.20064 (JHEP)

S.R.Sharpe, "Three-particle formalism for multiple channels...," LATTICE 2024, 7/29/2024

Status of 3-particle formalism [References at end]

- 3 identical spinless particles
 - Applications: $3\pi^+$, $3K^+$, as well as ϕ^4 theory [see talk by Fernando Romero-López (later this session)]
- Mixing of two- and three-particle channels for identical spinless particles
 - Step on the way to $N(1440) \rightarrow N\pi$, $N\pi\pi$, etc.
- 3 degenerate but distinguishable spinless particles, e.g 3π with isospin 0, 1, 2, 3
 - Potential applications: $\omega(782), a_1(1260), h_1(1170), \pi(1300), \dots$
- 3 nondegenerate spinless particles
 - Potential applications: $D_s^+ D^0 \pi^-$
- 2 identical +1 different spinless particles
 - Applications: $\pi^+\pi^+K^+$, $K^+K^+\pi^+$ [see talk by Fernando Romero-López (later this session)]
- 3 identical spin-1/2 particles
 - Potential applications: 3n, 3p, 3Λ [see talk by Wilder Schaaf (Tuesday 11:35am "Structure of Hadrons.")
- $DD\pi$ for all isospins (also $BB\pi$, $KK\pi$)
 - Potential applications: $T_{cc} \rightarrow D^*D$ incorporating LH cut [see talk by Sebastian Dawid (later this session)]

What is missing?

- Non-indentical spin- $\frac{1}{2}$ particles, e.g. *ppn*, *nnp*
 - Underway with Zack Draper, Max Hansen, & Fernando Romero-López
- Systems with mixed spins, e.g. $NN\pi$ with I = 0, 1, 2
 - Underway with Sebastian Dawid, Max Hansen, & Fernando Romero-López
- Systems with mixed spins that mix with 2-particle channels, e.g. Roper $\rightarrow p\pi\pi + p\pi$
 - Underway with Sebastian Dawid, Max Hansen, & Fernando Romero-López
- Multiple nondegenerate 3-particle channels, e.g. $b_1(1235), \eta(1295) \rightarrow \pi \pi \eta + K \overline{K} \pi$
 - This talk!
- Combinations of the above
 - Should be straightforward...

- We work in isosymmetric QCD, so G parity is a good symmetry (also on the lattice)
 - $\pi\pi\eta$ has $G = +, K\overline{K}\pi$ has $G = \pm$ (depending on isospin & symmetry of $K\overline{K}$ pair)
 - We project on the G = + sector, to avoid mixing with 3π

- We work in isosymmetric QCD, so G parity is a good symmetry (also on the lattice)
 - $\pi\pi\eta$ has $G = +, K\overline{K}\pi$ has $G = \pm$ (depending on isospin & symmetry of $K\overline{K}$ pair)
 - We project on the G = + sector, to avoid mixing with 3π
- We consider unnatural $J^P(0^-, 1^+, 2^-, ...)$ to avoid mixing with 2π
 - In finite volume, must restrict to irreps that are not subduced from natural J^P
 - * E.g. A_{1u} in rest frame $(J^P = 0^-, 4^-, ...)$ and T_{1g} in rest frame $(J^P = 1^+, 3^+, ...)$

- We work in isosymmetric QCD, so G parity is a good symmetry (also on the lattice)
 - $\pi\pi\eta$ has $G = +, K\overline{K}\pi$ has $G = \pm$ (depending on isospin & symmetry of $K\overline{K}$ pair)
 - We project on the G = + sector, to avoid mixing with 3π
- We consider unnatural $J^P(0^-, 1^+, 2^-, \ldots)$ to avoid mixing with 2π
 - In finite volume, must restrict to irreps that are not subduced from natural J^P
 - * E.g. A_{1u} in rest frame $(J^P = 0^-, 4^-, ...)$ and T_{1g} in rest frame $(J^P = 1^+, 3^+, ...)$
- Allowed values of total isospin are I = 0, 1, 2
 - I = 0 contains $J^{PC} = 0^{-+}$ resonance $\eta(1295)$
 - I = 1 contains $J^{PC} = 1^{+-}$ resonance $b_1(1235)$

- We work in isosymmetric QCD, so G parity is a good symmetry (also on the lattice)
 - $\pi\pi\eta$ has $G = +, K\overline{K}\pi$ has $G = \pm$ (depending on isospin & symmetry of $K\overline{K}$ pair)
 - We project on the G = + sector, to avoid mixing with 3π
- We consider unnatural $J^P(0^-, 1^+, 2^-, ...)$ to avoid mixing with 2π
 - In finite volume, must restrict to irreps that are not subduced from natural J^P
 - * E.g. A_{1u} in rest frame $(J^P = 0^-, 4^-, ...)$ and T_{1g} in rest frame $(J^P = 1^+, 3^+, ...)$
- Allowed values of total isospin are I = 0, 1, 2
 - I = 0 contains $J^{PC} = 0^{-+}$ resonance $\eta(1295)$
 - I = 1 contains $J^{PC} = 1^{+-}$ resonance $b_1(1235)$
- Caveat: these resonances also decay to 4π , which we do not include, and could decay to (but are not seen in) 6π , 8π , $4\pi + \eta$, ...

Method of derivation

- Work in RFT approach [Hansen & SRS, 2014, ...]
- Use time-ordered perturbation theory (TOPT) based method [Blanton & SRS, 2020]
 - Combines 2+1 formalism (for $\pi\pi\eta$) with nonidentical formalism (for $K\overline{K}\pi$)

Method of derivation

- Work in RFT approach [Hansen & SRS, 2014, ...]
- Use time-ordered perturbation theory (TOPT) based method [Blanton & SRS, 2020]
 - Combines 2+1 formalism (for $\pi\pi\eta$) with nonidentical formalism (for $K\overline{K}\pi$)
- Result takes standard form

Method of derivation

- Work in RFT approach [Hansen & SRS, 2014, ...]
- Use time-ordered perturbation theory (TOPT) based method [Blanton & SRS, 2020]
 - Combines 2+1 formalism (for $\pi\pi\eta$) with nonidentical formalism (for $K\overline{K}\pi$)
- Result takes standard form

S.R.Sharpe, "Three-particle formalism for multiple channels...," LATTICE 2024, 7/29/2024

New features

- $\det \left[1 + \widehat{F}_{3}^{[I]} \widehat{\mathcal{K}}_{df,3}^{[I]} \right] = 0 ,$ $\widehat{F}_{3}^{[I]} = \frac{\widehat{F}^{[I]}}{3} \widehat{F}^{[I]} \frac{1}{(\widehat{\mathcal{K}}_{2,L}^{[I]})^{-1} + \widehat{F}_{G}^{[I]}} \widehat{F}^{[I]}$
- Multiple non-degenerate channels (notation is $[[pair-a, pair-b]_{I_{ab}}, spectator]_I$)

 $I = 2 \text{ has 5: } [[K\bar{K}]_1\pi]_2, [[K\pi]_{3/2}\bar{K}]_2, [[\bar{K}\pi]_{3/2}K]_2, [[\pi\pi]_2\eta]_2, [[\pi\eta]_1\pi]_2,$

 $I = 1 \text{ has 8:} \quad \frac{[[K\bar{K}]_1\pi]_1, [[K\bar{K}]_0\pi]_1, [[K\pi]_{3/2}\bar{K}]_1, [[K\pi]_{1/2}\bar{K}]_1, [[\bar{K}\pi]_{3/2}K]_1, [[\bar{K}\pi]_{1/2}K]_1}{[[\pi\pi]_1\eta]_1, [[\pi\eta]_1\pi]_1,}$

- I = 0 has 5: $[[K\bar{K}]_1\pi]_0, [[K\pi]_{1/2}\bar{K}]_0, [[\bar{K}\pi]_{1/2}K]_0, [[\pi\pi]_0\eta]_0, [[\pi\eta]_1\pi]_0$
 - Kinematic factors are channel-dependent

New features

• Multiple non-degenerate channels (notation is $[[pair-a, pair-b]_{I_{ab}}, spectator]_I$)

 $I = 2 \text{ has 5: } [[K\bar{K}]_1\pi]_2, [[K\pi]_{3/2}\bar{K}]_2, [[\bar{K}\pi]_{3/2}K]_2, [[\pi\pi]_2\eta]_2, [[\pi\eta]_1\pi]_2,$

 $I = 1 \text{ has 8:} \quad \frac{[[K\bar{K}]_1\pi]_1, [[K\bar{K}]_0\pi]_1, [[K\pi]_{3/2}\bar{K}]_1, [[K\pi]_{1/2}\bar{K}]_1, [[\bar{K}\pi]_{3/2}K]_1, [[\bar{K}\pi]_{1/2}K]_1}{[[\pi\pi]_1\eta]_1, [[\pi\eta]_1\pi]_1,}$

I = 0 has 5: $[[K\bar{K}]_1\pi]_0, [[K\pi]_{1/2}\bar{K}]_0, [[\bar{K}\pi]_{1/2}K]_0, [[\pi\pi]_0\eta]_0, [[\pi\eta]_1\pi]_0$

- Kinematic factors are channel-dependent
- Projection onto G = + reduces channel count to 4, 6, and 4, e.g.

S.R.Sharpe, "Three-particle formalism for multiple channels...," LATTICE 2024, 7/29/2024

$$\det \left[1 + \widehat{F}_{3}^{[I]} \widehat{\mathcal{K}}_{df,3}^{[I]} \right] = 0 ,$$
$$\widehat{F}_{3}^{[I]} = \frac{\widehat{F}^{[I]}}{3} - \widehat{F}^{[I]} \frac{1}{(\widehat{\mathcal{K}}_{2,L}^{[I]})^{-1} + \widehat{F}_{G}^{[I]}} \widehat{F}^{[I]}$$

Form of $\mathscr{K}_{df,3}$: example of I = 0

- Two underlying channels: $a) [[K\bar{K}]_1\pi]_0, b) [[\pi\pi]_0\eta]_0$
- Assuming PT symmetry, there are 3 independent amplitudes: aa, ab = ba, bb
- Convert to 4-d matrix form using projection operators:

$$\begin{split} \widehat{\mathcal{K}}_{\mathrm{df},3}^{[I=0]} &= \sum_{x,y \in \{a,b\}} \mathcal{Y}^{[I=0],x} \circ \mathcal{K}_{\mathrm{df},3}^{[I=0],xy}(\{p\},\{k\}) \circ \mathcal{Y}^{[I=0],y\dagger} \\ \mathcal{Y}^{[I=0],a\dagger} \to \left(\frac{1}{2} (\mathcal{Y}_{(312)}^{[kab]\dagger} + \mathcal{Y}_{(321)}^{[kab]\dagger}), -\sqrt{\frac{1}{2}} (\mathcal{Y}_{(213)}^{[kab]\dagger} + \mathcal{Y}_{(123)}^{[kab]\dagger}), 0, 0 \right) , \\ \mathcal{Y}^{[I=0],b\dagger} \to \left(0, \ 0, \ \sqrt{\frac{1}{2}} \mathcal{Y}_{(312)}^{[kab]\dagger}, \ \mathcal{Y}_{(213)}^{[kab]\dagger} \right) , \\ \left[\mathcal{Y}_{\sigma}^{[kab]} \circ g \right]_{k\ell m} = \frac{1}{4\pi} \int d\Omega_{a^*} Y_{\ell m}(\hat{a}^*) g(\{p_i\}) \bigg|_{p_{\sigma(1)} \to k, \ p_{\sigma(2)} \to a, \ p_{\sigma(3)} \to b} \end{split}$$

• Can expand underlying amplitudes in a threshold expansion, or assume a pole form in the presence of a resonance—both are constrained by symmetries

Reduction to single channel

Reduction to single channel

Automatically $\pi\pi\eta$ only

Must use full $\pi\pi\eta + K\overline{K}\pi$ formalism

Reduction to single channel

- Intermediate region where can use either $\pi\pi\eta$ only or $\pi\pi\eta + K\overline{K}\pi$ formalism
- Two 3-particle channel formalism must reduce to that for single channel if integrate out offshell $K\overline{K}\pi$ intermediate states
- We have shown explicitly how this works—provides a cross-check on formalism

Summary & Outlook

- Generalization of QC3 to two 3-particle channels is relatively straightforward
 - New feature of G-parity projection not directly related to multiple channels
 - Decoupling of channel as drop below threshold is understood
- Extending formalism to include additional 3-particle channels will be simple
- Application to LQCD lies some way in the future
 - Working with heavier-than-physical pion masses will reduce issue of neglected four-pion channels
- Main present motivation was to understand/extend formalism

Thanks Any questions?

S.R.Sharpe, "Three-particle formalism for multiple channels...," LATTICE 2024, 7/29/2024

References

(Highly-)selected 2-particle refs

★ Original papers

- M. Lüscher, Commun.Math.Phys.105(1986)153-188; Nucl.Phys.B364(1991)237-251 [Derived QC2 using NRQM and proving relation to QFT]
- L. Lellouch & M. Lüscher, Commun.Math.Phys. 219 (2001) 31-44; arXiv:hep-lat/0003023 [Determined LL factors relating finite- and infinite-volume matrix elements]

★ Generalizations

- C. Kim, C. Sachrajda, & SRS, Nucl.Phys.B727 (2005) 218-243; arXiv:hep-lat/0507006 [QFT-based approach; LL factors in moving frames]
- R. Briceño, Phys.Rev.D 89 (2014) 7, 074507; arXiv:1401.3312 [QC2 for arbitrary spin]

RFT 3-particle papers

Max Hansen & SRS:

arXiv:1408.5933 (PRD) [HS14]

"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,"

arXiv:1504.04028 (PRD) [HS15]

"Perturbative results for 2- & 3-particle threshold energies in finite volume,"

arXiv:1509.07929 (PRD) [HSPT15]

"Threshold expansion of the 3-particle quantization condition,"

arXiv:1602.00324 (PRD) [HSTH15]

"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,"

arXiv: 1609.04317 (PRD) [HSBS16]

"Lattice QCD and three-particle decays of Resonances,"

arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]

Raúl Briceño, Max Hansen & SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD) [BHS17]
"Numerical study of the relativistic three-body quantization condition in the isotropic approximation," arXiv:1803.04169 (PRD) [BHS18]
"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429 (PRD 19) [BHS19]

"Testing the threshold expansion for three-particle energies at fourth order in φ⁴ theory," arXiv:1707.04279 (PRD) [SPT17]

Tyler Blanton, Fernando Romero-López & SRS:

"Implementing the three-particle quantization condition including higher partial waves," arXiv:1901.07095 (JHEP) [BRS19]

"I=3 three-pion scattering amplitude from lattice QCD," arXiv:1909.02973 (PRL) [BRS-PRL19]

"Implementing the three-particle quantization condition for π⁺π⁺K⁺ and related systems" 2111.12734 (JHEP)
S. Sharpe, ``Multiparticle scattering from LQCD," Amplitudes24, 6/12/24

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:

"Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states", arXiv:1908.02411 (JHEP) [BBHRS19]

Raúl Briceño, Max Hansen, SRS & Adam Szczepaniak:

"Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism," arXiv:1905.11188 (PRD)

<u>Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V.</u> <u>Mathieu, M. Mikhasenko, A. Pilloni, SRS & A.</u> <u>Szczepaniak:</u>

"On the Equivalence of Three-Particle Scattering Formalisms," arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

"Generalizing the relativistic quantization condition to include all three-pion isospin channels", arXiv:2003.10974 (JHEP) [HRS20]

"Decay amplitudes to three particles from finite-volume matrix elements," arXiv: 2101.10246 (JHEP)

Tyler Blanton & SRS:

"Alternative derivation of the relativistic three-particle quantization condition," arXiv:2007.16188 (PRD) [BS20a]

"Equivalence of relativistic three-particle quantization conditions," arXiv:2007.16190 (PRD) [BS20b]

"Relativistic three-particle quantization condition for nondegenerate scalars," arXiv:2011.05520 (PRD)

Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López & SRS" $3\pi^+$ & $3K^+$ interactions beyond leading order from lattice QCD," arXiv:2106.05590 (JHEP)Zack Draper, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López & SRS"Interactions of πK , $\pi \pi K$ and $KK\pi$ systems at maximal isospin from lattice QCD," arXiv:2302.13587

Zach Draper, Max Hansen, Fernando Romero-López & SRS: "Three relativistic neutrons in a finite volume," arXiv:2303.10219 (JHEP) Zach Draper & SRS: **"Three-particle formalism for multiple channels: the** $\eta\pi\pi + K\overline{K}\pi$ system in isosymmetric QCD," arXiv:2403.20064 (JHEP) Max Hansen, Fernando Romero-López & SRS: "Incorporating $DD\pi$ effects and left-hand cuts in lattice studies of the $T_{cc}(3875)^+$," arXiv:2401.06609 (JHEP)

Jorge Baeza-Ballesteros, Johan Bijnens, Tomas Husek, Fernando Romero-López, SRS & <u>Mattias Sjö:</u> "The isospin-3 three-particle K-matrix at NLO in ChPT," arXiv:2303.13206 (JHEP) & "The three-pion K-matrix at NLO in ChPT," arXiv:2401.14293 (JHEP)

Other work

★ Implementing RFT integral equations

- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3\pi^+$ spectrum and using to determine three-particle scattering amplitude]
- A. Jackura et al., <u>2010.09820</u>, PRD [Solving s-wave RFT integral equations in presence of bound states]
- S. Dawid, Md. Islam and R. Briceño, <u>2303.04394</u> [Analytic continuation of 3-particle amplitudes]
- A. Jackura, 2208.10587, PRD [3-body scattering and quantization conditions from S-matrix unitarity]

★ Reviews

- A. Rusetsky, <u>1911.01253</u> [LATTICE 2019 plenary]
- M. Mai, M. Döring and A. Rusetsky, <u>2103.00577</u> [Review of formalisms and chiral extrapolations]
- F. Romero-López, 2112.05170, [Three-particle scattering amplitudes from lattice QCD]

★ Other numerical simulations

- F. Romero-López, A. Rusetsky, C. Urbach, <u>1806.02367</u>, JHEP [2- & 3-body interactions in φ^4 theory]
- M. Fischer et al., 2008.03035, Eur.Phys.J.C [$2\pi^+ \otimes 3\pi^+$ at physical masses]
- M. Garofolo et al., <u>2211.05605</u>, JHEP [3-body resonances in ϕ^4 theory]

S. Sharpe, ``Multiparticle scattering from LQCD," Amplitudes24, 6/12/24

Other work

★ Other RFT (and related) derivations

- A. Jackura, 2208.10587, PRD [3-body scattering and quantization conditions from S-matrix unitarity]
- R. Briceño, A. Jackura, D. Pefkou & F. Romero-López, 2402.12167, JHEP [Electroweak three-body decays in the presence of two- and three-body bound states]

★ Implementing RFT integral equations

- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3\pi^+$ spectrum and using to determine three-particle scattering amplitude]
- A. Jackura et al., <u>2010.09820</u>, PRD [Solving s-wave RFT integral equations in presence of bound states]
- S. Dawid, Md. Islam & R. Briceño, <u>2303.04394</u>, PRD [Analytic continuation of 3-particle amplitudes]
- S. Dawid, Md. Islam, R. Briceño, & A. Jackura, 2309.01732 [Evolution of Efimov States]
- A. Jackura & R. Briceño, 2312.00625 [Partial-wave projection of the one-particle exchange in three-body scattering amplitudes]

***** NREFT approach

Other work

- H.-W. Hammer, J.-Y. Pang & A. Rusetsky, <u>1706.07700</u>, JHEP & <u>1707.02176</u>, JHEP [Formalism & examples]
- M. Döring et al., <u>1802.03362</u>, PRD [Numerical implementation]
- J.-Y. Pang et al., <u>1902.01111</u>, PRD [large volume expansion for excited levels]
- F. Müller, T. Yu & A. Rusetsky, <u>2011.14178</u>, PRD [large volume expansion for I=1 three pion ground state]
- F. Romero-López, A. Rusetsky, N. Schlage & C. Urbach, <u>2010.11715</u>, JHEP [generalized large-volume exps]
- F. Müller & A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]
- J-Y. Pang, M. Ebert, H-W. Hammer, F. Müller, A. Rusetsky, <u>2204.04807</u>, JHEP, [Spurious poles in a finite volume]
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, <u>2110.09351</u>, JHEP [Relativistic-invariant formulation of the NREFT threeparticle quantization condition]
- J. Lozano, U. Meißner, F. Romero-López, A. Rusetsky & G. Schierholz, <u>2205.11316</u>, JHEP [Resonance form factors from finite-volume correlation functions with the external field method]
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, <u>2211.10126</u>, JHEP [3-particle Lellouch-Lüscher formalism in moving frames]
- R. Bubna, F. Müller, A. Rusetsky, <u>2304.13635</u> [Finite-volume energy shift of the three-nucleon ground state]
- J-Y. Pang, R. Bubna, F. Müller, A. Rusetsky, J-J. Wu, 2312.04391 [Lellouch-Lüscher factor for $K \rightarrow 3\pi$ decays]
- R. Bubna, H-W. Hammer, F. Müller, J-Y. Pang, A. Rusetsky, 2402.12985 [Lüscher equation with long range forces]

Alternate 3-particle approaches

★ Finite-volume unitarity (FVU) approach

- M. Mai & M. Döring, <u>1709.08222</u>, EPJA [formalism]
- M. Mai et al., <u>1706.06118</u>, EPJA [unitary parametrization of M_3 involving R matrix; used in FVU approach]
- A. Jackura et al., <u>1809.10523</u>, EPJC [further analysis of R matrix parametrization]
- M. Mai & M. Döring, <u>1807.04746</u>, PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., <u>1909.05749</u>, PRD [applying FVU approach to $3\pi^+$ spectrum from Hanlon & Hörz]
- C. Culver et al., <u>1911.09047</u>, PRD [calculating $3\pi^+$ spectrum and comparing with FVU predictions]
- A. Alexandru et al., <u>2009.12358</u>, PRD [calculating $3K^-$ spectrum and comparing with FVU predictions]
- R. Brett et al., <u>2101.06144</u>, PRD [determining $3\pi^+$ interaction from LQCD spectrum]
- M. Mai et al., <u>2107.03973</u>, PRL [three-body dynamics of the $a_1(1260)$ from LQCD]
- D. Dasadivan et al., <u>2112.03355</u>, PRD [pole position of $a_1(1260)$ in a unitary framework]
- D. Seivert, M. Mai, U-G. Meißner, 2212.02171, JHEP [Particle-dimer approach for the Roper resonance]

★ HALQCD approach

• T. Doi et al. (HALQCD collab.), <u>1106.2276</u>, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

Backup slides

Forms of F and G

• Symmetric form of QC3 takes the by-now familiar form

$$\begin{split} \prod_{I \in \{0,1,2\}} \det_{i,k,\ell,m} \left[1 + \widehat{\mathcal{K}}_{\mathrm{df},3}^{[I]} \, \widehat{F}_{3}^{[I]} \right] &= 0 \\ \widehat{F}_{3}^{[I]} &= \frac{\widehat{F}^{[I]}}{3} - \widehat{F}^{[I]} \frac{1}{1 + \widehat{\mathcal{M}}_{2,L}^{[I]} \widehat{G}^{[I]}} \widehat{\mathcal{M}}_{2,L}^{[I]} \widehat{F}^{[I]}, \qquad \widehat{\mathcal{M}}_{2,L}^{[I]} &= \frac{1}{\widehat{\mathcal{K}}_{2,L}^{[I]-1} + \widehat{F}^{[I]}} \\ \widehat{F}^{[I=0]} &= \operatorname{diag} \left(\widetilde{F}^{D}, \widetilde{F}^{\pi} \right) \qquad : \widehat{G}^{[I=0]} = \left(\frac{G^{DD}}{\sqrt{2}G^{\pi D}P_{\ell}} \frac{\sqrt{2}P_{\ell}G^{D\pi}}{0} \right) \\ \left[\widetilde{F}^{(i)} \right]_{p'\ell'm';p\ell m} &= \delta_{p'p} \frac{H^{(i)}(p)}{2\omega_{p}^{(i)}L^{3}} \left[\frac{1}{L^{3}} \sum_{a}^{\mathrm{UV}} - \mathrm{PV} \int^{\mathrm{UV}} \frac{d^{3}a}{(2\pi)^{3}} \right] \left[\frac{\mathcal{Y}_{\ell'm'}(a^{*(i,j,p)})}{(q_{2,p'}^{*(i)})'} \frac{1}{4\omega_{a}^{(j)}\omega_{b}^{(k)}(E - \omega_{p}^{(i)} - \omega_{a}^{(j)} - \omega_{b}^{(k)})} \frac{\mathcal{Y}_{\ell m}(a^{*(i,j,p)})}{(q_{2,p}^{*(j)})^{\ell}} \right] \\ \left[\widetilde{G}^{(ij)} \right]_{p\ell'm';r\ell m} &= \frac{1}{2\omega_{p}^{(i)}L^{3}} \frac{\mathcal{Y}_{\ell'm'}(r^{*(i,j,p)})}{(q_{2,p'}^{*(i)})''} \frac{H^{(i)}(p)H^{(j)}(r)}{b_{ij}^{2} - m_{k}^{2}} \frac{\mathcal{Y}_{\ell m}(p^{*(j,i,r)})}{(q_{2,r}^{*(j)})^{\ell}} \frac{1}{2\omega_{r}^{(j)}L^{3}}, \\ \text{where } b_{ij} &= (E - \omega_{p}^{(i)} - \omega_{r}^{(j)}, P - p - r). \end{split}$$

S.R.Sharpe, "Three-particle formalism for multiple channels...," LATTICE 2024, 7/29/2024