Lattice QCD study of Ξ_{cc} - Ξ_{cc} interactions on the physical point

Takumi Doi (RIKEN iTHEMS)

With

Yan Lyu (RIKEN iTHEMS) Kotaro Murakami (TITech) Liang Zhang (RIKEN iTHEMS / CAS SINAP)

for HAL QCD Collaboration

Mysteries of Exotic hadrons

New theoretical paradigm is necessary!

Various models proposed:

Exotics close to the thresholds : Determination of Hadron interactions is crucial

 \leftarrow > Systematic investigation of families of exotics

HAL QCD method

NBS wave func.

 $\psi_{NBS}(ec{r})$ $\simeq A_k \sin(kr - l\pi/2 + \delta_l(k))/(kr)$

E-indep potentail from NBS w.f.

Lattice QCD

Faithful to Phase Shifts by construction

Aoki-Hatsuda-Ishii PTP123(2010)89

(non-locality: derivative expansion)

Non-local pot by Deep-Learning: talk by L. Wang (Aug 2)

- Time-dependent HAL method
 - G.S. saturation NOT required
- Coupled Channel formalism

Above inelastic threshold → Essential for Exotics, YN/YY-forces

N.Ishii et al. (HAL Coll.) PLB712(2012)437

3

"Signal" from (elastic) excited states

S. Aoki et al. (HAL Coll.) Proc.Jpn.Acad.B87(2011)509

LQCD @ near & on the physical point

Nf = 2 + 1 gauge configs

- clover fermion + Iwasaki gauge w/ stout smearing
- $V = (96 a)^4 = (8.1 fm)^4$
- -a = 0.084372(54)(+109/-6) fm 1/a = 2338.8(1.5)(+0.2/-3.0) MeV

- [K-conf]

 $(m_{\pi}, m_{\kappa}) = (146, 525) \text{ MeV}, (\# \text{traj} \sim = 2000)$

PACS Coll., PoS LAT2015, 075

K computer (2012-19) • 10PF

- [F-conf] (HAL-conf-2023)

 $(m_{\pi l}, m_{\kappa}) = (137, 502) \text{ MeV}, (\# \text{traj} = 8000)$

HAL QCD Coll., arXiv:2406.16665

Fugaku (2021-) • 440PF

← Parameters from PACS10 conf (PACS Coll., PRD99, PRD100 ('19))

 NJ/ψ , N₁, by Y. Lyu (Jul 31), $\Lambda_c N$ by L. Zhang (Jul 31) Talks:

LQCD simulations at the physical quark masses

Single hadron spectrum well reproduced!

Fugaku (440PFlops)

T. Aoyama et al. (HAL Coll.), arXiv:2406.16665

Exotic tetraquark T_{cc}^+ ($cc\bar{u}\bar{d}$) near physical point

Y. Lyu, et al., PRL131(2023)161901 (Editor's suggestion)

• LQCD calc of D-D* (I=0, $J^P=1^+$) interactions at $m\pi=146MeV$

Quark mass dependence of 1/a₀

<u>Mass spectrum of $D^0D^0\pi^+$ </u>

Better agreement w/ "physical mass" potential

<u>Mass spectrum of $D^0D^0\pi^+$ </u>

Tcc: ~ meson molecular like state of D-D*

Exotic Family of Tcc state?

• Family of Heavy quark DoF

Tcs, Tbs, Tbc, Tbb, ...

 Here, we consider "superflavor symmetry" (heavy quark anti-diquark symmetry)

Georgi-Wise, PLB243(1990)279 Savage-Wise, PLB248(1990)177

Superflavor partner of Tcc ?

<u>Physical point simulation of Ξ_{cc} – Ξ_{cc} interactions</u>

- F-conf is used for phys point calc on Fugaku
- Ξ_{cc} - Ξ_{cc} interactions

$$\begin{split} I(J^P) &= 0(1^+) & {}^3\text{S}_1 - {}^3\text{D}_1 \text{ channel} & \longleftarrow & \text{Candidate of} \\ I(J^P) &= 1(0^+) & {}^1\text{S}_0 \text{ channel} \end{split}$$

•
$$\Xi_{ss} - \Xi_{ss}$$
 (= usual $\Xi - \Xi$) interactions

 We can use this system as a "reference" to probe the role of heavy quark

$$\begin{split} I(J^P) &= 0(1^+) & {}^3\mathsf{S}_1 \cdot {}^3\mathsf{D}_1 \text{ channel} & \bigstar \ \mathsf{SU}(3) \text{f 10-plet} \\ I(J^P) &= 1(0^+) & {}^1\mathsf{S}_0 \text{ channel} & \bigstar \ \mathsf{SU}(3) \text{f 27-plet} \end{split}$$

Comparison of central potential in ³SD₁ channel

 $\Xi_{cc} - \Xi_{cc}$

 $\Xi_{ss} - \Xi_{ss}$

Completely different!

Comparison of tensor potential in ³SD₁ channel

 $\Xi_{cc} - \Xi_{cc}$

 $\Xi_{ss} - \Xi_{ss}$

Qualitatively similar Tensor force is small for both systems

Comparison of central potential in ¹S₀ channel

 $\Xi_{00} = \Xi_{00}$

 $\Xi_{\gamma\gamma} = \Xi_{\gamma\gamma}$

Qualitatively similar Repulsive core is suppressed for $\Xi_{cc}\Xi_{cc}$

16

Coupled channel effect?

- Approximation in $\Xi_{cc}\Xi_{cc}$ (I=0, J^P=1⁺ channel)
 - There exists open channel, $\Lambda_c \Omega_{ccc}$, below $\Xi_{cc} \Xi_{cc}$ channel $\Lambda_c \Omega_{ccc}$ (~7082) vs. $\Xi_{cc} \Xi_{cc}$ (7243)
 - The issue is less significant in $\Xi_{cc}\Xi_{cc}$ (I=1, J^P=0⁺ channel) $\Sigma_{c}\Omega_{ccc}$ (~7251) (D-wave) vs. $\Xi_{cc}\Xi_{cc}$ (7243)
 - The issue does not exist in strangeness counter parts: $\Lambda_{s}\Omega_{sss}$ (2788) vs. $\Xi_{ss}\Xi_{ss}$ (2637)
- At this moment, all analyses are performed in single-channel approximation (w.r.t. particle base)

$\underline{\Xi_{cc}}\underline{\Xi_{cc}}$ (³SD₁) : Time-dependence of potential

Error reduction by Misner's method (partial wave decomposition on lattice)

T. Miyamoto+, PRD101(2020)074514

Coupled channel effect seems to be suppressed

<u>Summary</u>

- Hadron interactions from Lattice QCD at physical point
 - New configuration set, "HAL-conf-2023" (F-conf), were generated
 - $(m_{\pi}, m_{K}) = (137, 502) \text{ MeV}, L \sim = 8 \text{fm}, 1/a \sim = 2.3 \text{GeV}, \# \text{traj} = 8000$
 - Various interactions /exotic states, e.g., Tcc state
- $\Xi_{cc}\Xi_{cc}$ interactions in I(J^P)=0(1⁺), I(J^P)=1(0⁺) channels
 - $\Xi_{cc}\Xi_{cc}$ (I(J^P)=0(1⁺)) could be superflavor partner of Tcc
 - Compared with counter-part systems w/ strangeness, $\Xi_{ss}\Xi_{ss}$
 - Possibly strong attraction in $\Xi_{cc}\Xi_{cc}$ (I(J^P)=0(1⁺))
 - Future:

Systematic study of families of exotics Nuclear / Hadron physics from Lattice QCD

