Strong decay of double charm tetraquark T_{cc}

Subhasish Basak¹ Protick Mohanta¹ Srijit Paul²

¹NISER, India

²University of Maryland, USA

LATTICE 2024, Liverpool, UK

 Ω

To begin with . . .

- LHCb discovered doubly charmed tetraquark T_{cc} marginally below the $D^0 D^{*+}$ threshold. It is long lived $ccl_1l_2 \approx cl_1 + cl_2$ means difficult to decay.
- m_h/m_l large \Rightarrow lattice QCD indicates existence of bound doubly bottom tetraquark $T_{bb}(bb\bar{u}\bar{d})$. Can charm play that role? Any cc state would be around ± 200 MeV about $D^0 D^{\star\,+}$ threshold.
- Question on T_{cc} bound state is not yet convincingly settled, if the plot from Chen et al. [2204.02649] is anything to go by

Our operators . . .

Double bottom tetraquark T_{bb}/Z_{bb} lattice studies, supported bound state and advocated use of diquark-antidiquark operator as it has maximum overlap with ground state and contributes maximally in binding energy. But . . .

Cheung et al. [JHEP 11,033] found diquark operator of form $|\bar{u}\bar{d}| - |c\bar{c}|$ not to have significant effects on finite volume spectra.

Cheng et al. [Chinese Physics C45, 043102] showed such operator results in an unstable T_{cc} .

Understandably, most of the past lattice T_{cc} investigations didn't consider diquark-antidiquark operator.

In spite of negative press, studies based on heavy quark symmetries *Eichten* et al. [PRL 119, 202002], Mehen [PRD 96, 094028] showed usefulness of diquark operators in double heavy tetraquarks.

 QQ

イロト イ団 トイ ヨト イヨト 一番

Hints from $\Sigma_{\Omega} - \Lambda_{\Omega}$

Apart from the usual $D - D^\star$ Molecular operator and Scattering operator, we included diquark-antidiquark operator in our investigation.

A few other motivations are –

• Role of diquark-antidiquark : Σ_{Q} , Λ_{Q} both having same quark content

 $(\Sigma_Q)_\alpha = \epsilon_{abc} ({\mu^a}^\mathcal{T} C\gamma_k d^b) Q_\alpha^c$ $(\Lambda_Q)_{\alpha} = \epsilon_{abc} (u^{aT} C \gamma_5 d^b) Q_{\alpha}^c$

For $Q = c$, $\Sigma_c - \Lambda_c \sim 167$ MeV and $Q = b$, $\Sigma_b - \Lambda_b \sim 191$ MeV. With $m_{\pi} \sim 500$ MeV, these two operators generate a mass difference of ~ 30 MeV. With decreasing m_{π} the mass splittings gets significant. (*Bowler et al.*) [PRD 54,3619])

Worsening of the D^{\star} plateau for lighter pion mass indicates the three body effects $T_{cc}(cc\bar{u}\bar{d}) \rightarrow D D^* \rightarrow D D \pi$

 T_{cc} diquark-antidiquark operator is related to Λ_{Q} operator by heavy quark-diquark symmetry. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

T_{cc} operators

The following operators are used in this project

$$
\mathcal{D}(x) = \left[c(x)^{a T} C \gamma_{k} c(x)^{b} \right] \left[\bar{u}(x)^{a} C \gamma_{5} \bar{d}(x)^{b T} \right]
$$
\n
$$
\mathcal{M}(x) = \left[\bar{d}(x)^{a} \gamma_{k} c(x)^{a} \right] \left[\bar{u}(x)^{b} \gamma_{5} c(x)^{b} \right]
$$
\n
$$
\mathcal{S}(t; \vec{p}_{1}, \vec{p}_{2}) = \sum_{\vec{x}} \left[\bar{d}(x)^{a} \gamma_{k} c(x)^{a} \right] e^{i \vec{p}_{1} \cdot \vec{x}} \times \sum_{\vec{y}} \left[\bar{u}(y)^{b} \gamma_{5} c(y)^{b} \right] e^{i \vec{p}_{2} \cdot \vec{y}}
$$

Spinor indices are summed over within each square brackets. In the center-of-mass frame, D and D^* mesons in the scattering operator ${\cal S}$ are given back-to-back momenta $\vec{p}_1 + \vec{p}_2 = 0$.

Subsequently, we calculated the correlator matrix required for GEVP analysis and exploited the time reversal and charge conjugation symmetry for simplifying numerics.

 QQQ

イロト イ押ト イヨト イヨト

For demonstration, the explicit form of the correlator $\mathcal{C}_{DD}(t)$ reads

$$
C_{\mathcal{DD}}(t) = \sum_{\vec{x}} \left\langle \mathcal{D}(x) \mathcal{D}(0)^{\dagger} \right\rangle
$$

\n
$$
= \sum_{\vec{x}} \text{Tr} \left[\left\{ \mathcal{G}_c(t, \vec{x}; 0) \right\}^{ad \, T} \left(\gamma_k \gamma_4 \gamma_2 \mathcal{G}_c(t, \vec{x}; 0) \gamma_4 \gamma_2 \gamma_k \right)^{bc} \right]
$$

\n
$$
\times \text{Tr} \left[\left\{ \gamma_4 \gamma_2 \mathcal{G}_u(t, \vec{x}; 0)^{\dagger} \gamma_4 \gamma_2 \right\}^{da} \left(\gamma_5 \mathcal{G}_d(t, \vec{x}; 0)^{\dagger} \gamma_5 \right)^{cb \, T} \right]
$$

\n
$$
- \sum_{\vec{x}} \text{Tr} \left[\left\{ \mathcal{G}_c(t, \vec{x}; 0) \gamma_4 \gamma_2 \gamma_k \right\}^{ac} \left(\gamma_k \gamma_4 \gamma_2 \mathcal{G}_c(t, \vec{x}; 0) \right)^{bd \, T} \right]
$$

\n
$$
\times \text{Tr} \left[\left\{ \gamma_4 \gamma_2 \mathcal{G}_u(t, \vec{x}; 0)^{\dagger} \gamma_4 \gamma_2 \right\}^{da} \left(\gamma_5 \mathcal{G}_d(t, \vec{x}; 0)^{\dagger} \gamma_5 \right)^{cb \, T} \right]
$$

For calculation of the diagonal correlators $C_{DD}(t)$, $C_{MM}(t)$ and off-diagonal ones $C_{DM}(t)$ we need just the point-to-all propagators $G_u(t, \vec{x}; 0), G_c(t, \vec{x}; 0).$

Scattering correlators, the diagonal $C_{SS}(t; \vec{p}_1, \vec{p}_2)$ and off-diagonals $S\mathcal{M}$, $S\mathcal{D}$ require combination of point-to-all, stochastic time slice-to-all propagators (Abdel-Rehim et al. [CPC 220, 97]).

 200

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

One end trick for S operators

Consider the diagonal operator $C_{SS}(t)$ $\mathcal{C}_{\mathcal{S}\mathcal{S}}(t;\vec{p}_{1},\vec{p}_{2},\vec{p}_{4}) \quad = \quad \left\langle \mathcal{S}(t;\vec{p}_{1},\vec{p}_{2}) \, \mathcal{S}(0;\vec{p}_{3},\vec{p}_{4})^{\dagger} \, \right\rangle$ $=$ Σ $\vec{x}, \vec{y}, \vec{z}$ $e^{i(\vec{p}_1\cdot\vec{x}+\vec{p}_2\cdot\vec{y}-\vec{p}_4\cdot\vec{z})}\; {\rm Tr}\Big[\Big\{\gamma_5\mathcal{G}_d(t,\vec{x};0)^\dagger\gamma_5\Big\}\, \Big(\gamma_k\mathcal{G}_c(t,\vec{x};0)\gamma_k\Big)\Big]$ \times Tr $\left[\left\{\mathcal{G}_u(0,\vec{z};t,\vec{y})\right\} \left(\gamma_5 \mathcal{G}_c(t,\vec{y};0,\vec{z})\gamma_5\right)\right]$ $-\sum_{\alpha}e^{i(\vec{\rho}_{1}\cdot\vec{x}+\vec{\rho}_{2}\cdot\vec{y}-\vec{\rho}_{4}\cdot\vec{z})}\,\text{Tr}\Big[\Big\{\gamma_{5}\mathcal{G}_{d}(t,\vec{x};0)^{\dagger}\gamma_{5}\Big\}\,\Big(\gamma_{k}\mathcal{G}_{c}(t,\vec{x};0,\vec{z})\gamma_{5}\Big)\Big]$ \vec{x} , \vec{v} , \vec{z} $\left\{ \mathcal{G}_{u}(0,\vec{z};t,\vec{y})\right\} \left(\gamma_{5}\mathcal{G}_{c}(t,\vec{y};0)\gamma_{k}\right)$

The one-end trick is implemented by having complex $\mathbb{Z}(2) \times \mathbb{Z}(2)$ random numbers at $t = 0$ and inverting the fermion action. The first term in the above expression can be expressed as

$$
\frac{1}{N}\sum_{n}\sum_{\vec{x}}e^{i(\vec{p}_{1}\cdot\vec{x})}\Big\{\gamma_{k}\gamma_{5}G_{d}(t,\vec{x};0)^{\dagger}\gamma_{5}\gamma_{k}\Big\}_{s_{1}s_{2}}^{c_{1}c_{2}}\Big(G_{c}(t,\vec{x};0)\Big)_{s_{2}s_{1}}^{c_{2}c_{1}}\\ \times\sum_{\vec{y}}e^{i(\vec{p}_{2}\cdot\vec{y})}\Big(\phi_{c}^{n}(\vec{y},t)\Big)_{s_{3}}^{c_{3}}\Big(\phi_{u}^{n}(\vec{y},t)^{\dagger}\Big)_{s_{3}}^{c_{3}}
$$

 SB et.al. The contract of \mathcal{T}_{cc} [decay](#page-0-0) $\mathcal{T}_{\mathcal{T}c}$ decay $\mathcal{T}_{\mathcal{T}c}$ and $\mathcal{T}_{\mathcal{T}c}$ and

 Ω

In the last expression, the ϕ 's are single column of inverse of Dirac matrix and thus determined as,

$$
\left(D_c(r,x)\right)_{s_1s_2}^{c_1c_2}\left(\phi_c^n(x)\right)_{s_2}^{c_2} = \delta_{r_0,0}\left(\Xi(\vec{r})[n]\right)_{s_1}^{c_1}\left(D_u(r,x)\right)_{s_1s_2}^{c_1c_2}\left(\phi_u^n(x)\right)_{s_2}^{c_2} = \delta_{r_0,0}\left(\Xi(\vec{r})[n]\right)_{s_1}^{c_1}e^{i(\vec{p}_4\cdot\vec{r})}
$$

where $\Xi[n] \in \mathbb{Z}(2) \times \mathbb{Z}(2)$.

One-end trick is an efficient technique to estimate the product of two propagators stochastically, where the propagators are connected at space-time point, say (\vec{x},t) with sum over $(\vec{x}, \vec{\lambda})$ No additional propagator originating or ending at (\vec{x}, t) .

 200

Heavy & light quark actions

For charm quark, we used relativistic heavy quark action (RHQ) ,

$$
S_{\text{charm}} = a^4 \sum_{x} \bar{\psi}(x) \left[m_Q + \left(\gamma_0 D_0 - \frac{a}{2} D_0^2 \right) + \zeta \left(\gamma_i D_i - \frac{a}{2} D_i^2 \right) - \frac{a}{4} c_P \sigma_{\mu\nu} F_{\mu\nu} \right] \psi(x)
$$

For the light quarks the standard clover action.

$$
S = \sum_{n} \bar{\psi}(n)\psi(n) - k \sum_{n,\mu} \left[\bar{\psi}(n)(1 - \gamma_{\mu}) U_{\mu}(n)\psi(n + \hat{\mu}) + \bar{\psi}(n)(1 + r_{\mu}) U_{\mu}^{+}(n - \hat{\mu})\psi(n - \hat{\mu}) \right] - \frac{k c_{sw}}{2} \sum_{n,\mu,\nu} \bar{\psi}(n)\sigma_{\mu\nu}F_{\mu\nu}\psi(n)
$$

HISQ action that we chose for light quarks in our double bottom tetraquark project (Protick et al. [PRD 102, 094516]) worked rather well but has a serious drawback. It will make $C_{SD}(t)$ $C_{SD}(t)$ $C_{SD}(t)$ and $C_{SM}(t)$ $C_{SM}(t)$ $C_{SM}(t)$ identical! QQ

← ロ → → ← 何 →

Tuning RHQ action parameters

Tuning of the parameters $\{am_c, c_P, \zeta\}$ is done using (Aoki et al. [PRD 86, 116003], Flynn et al. [PRD 107, 114512]),

- **•** spin-averaged mass $\overline{M}_{c\bar{c}} = (\eta_c + 3J/\psi) / 4$
- hyperfine splitting $\Delta M_{c\bar{c}} = M_{1/4b} M_{nc}$
- velocity of light $E_{\eta_c}^2(\vec{p}) = c^2 \vec{p}^2 + M_{\eta_c}^2(0)$

Assuming linear relation among $\{\overline{M}_{c\bar{c}}, \Delta M_{c\bar{c}}, c\}$ and the parameters $\{am_c, c_p, \zeta\}$ close to their true values, we performed multivariate linear regression analysis

$$
\begin{pmatrix} \overline{M}_{c\bar{c}} \\ \Delta M_{c\bar{c}} \\ c \end{pmatrix} = \mathbf{J} \cdot \begin{pmatrix} am_Q \\ c_P \\ \zeta \end{pmatrix} + \mathbf{A}
$$

KED KARD KED KED E VOOR

Tuned parameters are obtained by matching $\sqrt[a]{M}_{c\bar{c}}^{\text{latt}} \approx 3068.5$ MeV, $a\Delta M_{c\bar{c}}^{\rm latt} \approx 113.5$ MeV and $c^{\rm latt} \approx 1$ and inverting the above relation,

$$
\begin{pmatrix} \text{am}_Q \\ c_P \\ \zeta \end{pmatrix}_{\text{tuned}} = \mathbf{J}^{-1} \cdot \begin{bmatrix} \overline{M}_{c\bar{c}} \\ \Delta M_{c\bar{c}} \\ c \end{bmatrix}_{\text{pdg}} - \mathbf{A} \right]
$$

Lattices used are MILC generated $N_f = 2 + 1$ asgtad ensembles of $a \approx 0.15$ and 0.09 fm.

The range of κ values used for light quarks are

- \bullet $16^3 \times 48$: $\kappa = 0.14005$, 0.1405, 0.1408, 0.1411, 0.1413, 0.1415, 0.1416, 0.1416, 0.1418
- **28**³ \times 96 : κ = 0.1379, 0.13815, 0.1383, 0.13845, 0.13855, 0.13865, 0.13875, 0.13880

For fermionic propagators we used Gaussian smeared point source and the gauge links were APE smeared.

KOD KARD KED KED ORA

D, D^{*} dispersion relation

For eventual application of Lüscher quantization condition relating infinite volume DD^\star scattering phase shifts to finite volume energy spectrum, we obtained the D and D^\ast dispersion relation,

The D and D^* masses and speed of light determined from the dispersion relation are consistent with the relativistic dispersion relation in rest frame.

 200

イロト イ母 ト イヨ ト イヨ)

D^* with reducing quark mass

One way inclusion of diquark-antidiquark can be justified is worsening of D^\ast signal as quark mass is reduced making extraction of the D^\ast state difficult. Is it because we are getting closer to the left-hand cut. Showing here $16^3 \times 48$ data

 Ω

 SB et.al. The contract of \mathcal{T}_{cc} [decay](#page-0-0) \mathcal{T}_{c} decay \mathcal{T}_{c} and \math

 $\Sigma_c - \Lambda_c$

The $\Sigma_c - \Lambda_c$ splitting is opening up for lower quark mass. \bullet $\kappa = 0.13865$, $m_{\pi} = 420$ MeV : 0.033 (\approx 72) MeV • $\kappa = 0.13845$, $m_{\pi} = 507$ MeV : 0.026 (\approx 57) MeV

 QQ

Diagonal DD , MM and GEVP $_{28^3 \times 96}$

Comparing the diagonal DD , MM states with the GEVP, we found lowest state \sim 3890 MeV being around $D^0D^{*\,+}$ threshold at relatively higher $m_\pi\sim$ 550 MeV. At present level of statistics, spectrum at lower m_{π} are too noisy to extract anything meaningful as of now.

Diagonal DD , MM , SS and GEVP $16^3 \times 48$

Comparing the diagonals DD , MM , SS states with the GEVP (preliminary).

 200

4 重

4 **D F**