Quark mass dependence of doubly heavy tetraquark binding

William Parrott

parrott@yorku.ca

York University

B. Colquhoun, A. Francis, R. J. Hudspith, R. Lewis, K. Maltman

- ▶ Do tetraquark bound states exist?
- Much interest in $T_{ll\bar{h}\bar{h}}$ $(l \in \{u, d, s\} h \in \{c, b\}).$
- ▶ Attractive heavy 3_c colour Coulomb (as $M \to \infty$) and spin dependent 'good-light diquark' J = 0 $\overline{3}_c$, not accessible for two separated mesons.
- ▶ Generally heavier heavies and lighter lights increases binding.
- ▶ 'Deep' binding widely predicted in I = 0 $(T_{ud\bar{b}\bar{b}})$ and I = 1/2 $(T_{\ell s\bar{b}\bar{b}}) J^P = 1^+ \lesssim 200$ MeV.
- ▶ For $T_{ud\bar{c}\bar{c}}$ an extremely precise LHCb measurement [LHCb 2109.01038] of 0.273(62) MeV.

- ▶ All of the work discussed uses $N_f = 2 + 1$ Wilson-Clover action [PACS-CS 0911.2561], with $a^{-1} = 2.194(10)$ GeV.
- ▶ We use 4 exisiting $32^3 \times 64$ ensembles [PACS-CS 0911.2561], as well as two $48^3 \times 64$ we generated.
- ▶ This gives 6 values for $165 \le m_{\pi} \le 707$ MeV.
- ▶ We wish to span a range of heavy quark masses m_h from $m_c < m_h \le m_b$, as well as $m_h > m_b$.
- ▶ Use NRQCD for heavy mass, effective for $m_c \leq m_h$. Downside NRQCD is hard to extrapolate to continuum.

Our¹ earliest previous work [1607.05214] considered $J^P = 1^+ T_{ud\bar{b}\bar{b}}$ and $T_{\ell s\bar{b}\bar{b}}$ ($\ell = u, d$) for three values of the pion mass (165, 299, 415 MeV). Two operators were used:

$$M(x) = \bar{b}_a^{\alpha}(x)\gamma_5^{\alpha\beta}u_a^{\beta}(x)\bar{b}_b^{\kappa}(x)\gamma_i^{\kappa\rho}u_b^{\rho}(x) - u \leftrightarrow d$$
$$D(x) = (u_a^{\alpha}(x))^T (C\gamma_5)^{\alpha\beta}d_b^{\beta}(x)\bar{b}_a^{\kappa}(x)(C\gamma_i)^{\kappa\rho}(\bar{b}_b^{\rho}(x))^T.$$

Wall sources were used to generate the propagators. Local sinks were used.

¹I will say 'our' to mean the current group, though I was not involved in YORK previous work.

A GEVP² analysis was performed using $G_{\mathcal{O}_1\mathcal{O}_2}(t) = \frac{C_{\mathcal{O}_1\mathcal{O}_2}(t)}{C_{PP}(t)C_{VV}(t)}$.

$$F(t) = \begin{pmatrix} G_{DD}(t) & G_{DM}(t) \\ G_{MD}(t) & G_{MM}(t) \end{pmatrix}$$
$$F(t)\nu = \lambda(t)F(t_0)\nu$$
$$\lambda(t) = Ae^{-\Delta E(t-t_0)} = (1+\delta)e^{-\Delta E(t-t_0)}.$$

The 2×2 matrix gives 2 Eigenvalues. The ground state, and a mixture of all excited states. Extract ΔE from a single exponential fit to $\lambda(t)$.

²Generalised Eigenvalue problem

Previous work: chiral analysis on q_1q_2bb

appear to rise.

Previous work: chiral analysis on q_1q_2bb

Bindings were extrapolated in m_{π} , with ΔE of 189(10)MeV and 98(7)MeV for $T_{ud\bar{b}\bar{b}}$ and $T_{\ell s\bar{b}\bar{b}}$ respectively.

YORK UNIVERSITE

Previous work: m_h analysis on $q_1 q_2 \bar{h} \bar{h}$ and $q_1 q_2 \bar{b} \bar{h}$

Next step in [1810.10550]:

- ► Uses highest statistics previous ensemble with $m_{\pi} = 299$ MeV, looking for $J^P = 1^+$ tetraquark.
- ▶ Variable heavy mass $am_h \in \{0.9, 1.0, 1.2, 1.6, 3.0, 4.0, 8.0, 10.0\}$ $(0.1 \leq \frac{m_b}{m_h} \leq 1.8).$
- ▶ Four channels: $ud\bar{b}\bar{h}$, $ud\bar{h}\bar{h}$, $\ell s\bar{b}\bar{h}$, $\ell s\bar{h}\bar{h}$.
- ▶ Again, use GEVP and wall-local correlators. For $q_1q_2\bar{b}\bar{h}$ case, GEVP is 3×3 .

Previous work: m_h analysis on $q_1q_2\bar{h}\bar{h}$ and $q_1q_2\bar{b}\bar{h}$

Plateaus are better but often appear to be rising. Note $b' \equiv h$.

William Parrott parrott@yorku.ca (N

Tetraquarks

Previous work: m_h analysis on $q_1q_2\bar{h}\bar{h}$ and $q_1q_2\bar{b}\bar{h}$

Tetraquarks

Previous work: m_h analysis on $q_1q_2\bar{h}\bar{h}$ and $q_1q_2\bar{b}\bar{h}$

Also look at $ud\bar{b}\bar{c}$ with relativistic heavy quark action for c, with $m_{\pi} = 164$, 299 and 415 MeV. Ground state is unaffected by 2×2 or 3×3 , but plateaus still short. Find a binding of 38(23)MeV.

Previous work in [2006.14294]:

- ▶ Uses meson-meson and diquark-diquark operators.
- ▶ Large range of $J^P = 1^+$ possible tetraquark channels: $ud\bar{c}\bar{b}$, $ud\bar{s}\bar{b}$, $ud\bar{s}\bar{c}$, $ud\bar{b}\bar{b}$, $\ell s\bar{b}\bar{b}$, $uc\bar{b}\bar{b}$, $sc\bar{b}\bar{b}$, $us\bar{c}\bar{b}$.
- Looked at $J^P = 0^+$ too.
- ▶ Used GEVP method and a single ensemble with $m_{\pi} = 192$ MeV.
- ▶ Key difference introduction of box sinks.

$$S^{B,R} = \frac{1}{N} \sum_{r^2 \le R^2} S(x+r,t).$$

Previous work: src snk analysis on $q_1 q_2 \bar{h}_1 \bar{h}_2$

Box sink for B_c (top), $ud\bar{b}\bar{b}$ (bot. 1) and $\ell s\bar{b}\bar{b}$ (bot. r). Different radii change direction of convergence. YORK

13 / 23

Previous work: src snk analysis on $q_1 q_2 \bar{h}_1 \bar{h}_2$

- ▶ Only find deep binding in $ud\bar{b}\bar{b}$ and $\ell s\bar{b}\bar{b}$ channels 113 and 36 MeV respectively.
- ▶ Did not find measurable binding in $ud\bar{c}\bar{b}$ not deeply bound.
- ▶ Shallow binding can't be ruled out without FV (Luscher) analysis.

Current work (see [2407.08816]) builds on [2006.14294], and applies it to m_l and m_h analyses.

- ▶ Uses a large number of (local) operators and four box sink radii.
- ▶ Focus on $J^P = 1^+ u d\bar{h}\bar{h}$, $u d\bar{b}\bar{h}$, $\ell s\bar{h}\bar{h}$ and $\ell s\bar{b}\bar{h}$ tetraquarks.
- Also look at $J^P = 0^+$ for $ud\bar{b}\bar{h}$ and $\ell s\bar{b}\bar{h}$.
- Carry out heavy mass analysis with nine m_h values.
- ► Also chiral extrapolation with six m_{π} values.
- ► Two newly generated ensembles with $N_x = 48$ give $m_{\pi}L > 3.6$ in all cases.
- ▶ Use multi-exponential fits to extract energies.

We perform correlated, simultaneous fits to the meson and tetraquark data, across all the source-sink combinations, for all sink radii.

$$C_2^{\text{mes/tet}} = \sum_n^N a_n^{\text{src}} a_n^{\text{snk}} (e^{-E_n^{\text{mes/tet}}t} \pm e^{-E_n^{\text{mes/tet}}(T-t)})$$

Bayesian fitting approach, with χ^2 and the Gaussian Bayes factor to judge fit quality.

Current work on $q_1q_2\bar{h}\bar{h}$ and $q_1q_2\bar{b}\bar{h}$

We find our fits to be very stable.

Tetraquarks

Current work on $q_1 q_2 \bar{h} \bar{h}$ and $q_1 q_2 \bar{b} \bar{h}$

Tetraquarks

Current work on $q_1 q_2 \bar{h} \bar{h}$ and $q_1 q_2 \bar{b} \bar{h}$

c.f. 2018 results

 $J^P = 1^+$ binding shallower than has been found in the past.

Current work on $q_1 q_2 \overline{h} \overline{h}$ and $q_1 q_2 \overline{b} \overline{h}$

 $udbh \ 0^+$ binding $\approx 20 \text{ MeV}$ shallower than $1^+ \implies ud\bar{b}\bar{c}$ decays $1^+ \rightarrow 0^+\gamma \text{ or } 1^+ \rightarrow B\bar{D}\gamma$. Look for highly collimated $B\bar{D}$.

Current work [2407.08816] builds on [2006.14294,1810.10550,1607.05214]

- ► We find deep $J^P = 1^+$ bindings: $ud\bar{b}\bar{b} = 115(17)$ MeV and $\ell s\bar{b}\bar{b} = 46.7(7.6)$ MeV ($\approx 1\sigma$ of this from FV effects).
- ► This agrees with less deeply bound emerging consensus [2006.14294, 2404.03588, 2303.17295, 2306.03565].
- ▶ $ud\bar{b}\bar{c}$ not deeply bound requires Luscher method ([2205.13982, 2205.02925] agrees, as does our 2020 paper [2006.14294]).
- ▶ Box sink improve plateaus.
- ▶ Difference in $T_{ud\bar{b}\bar{h}}(0^+)$ and $T_{ud\bar{b}\bar{h}}(1^+)$ may aid experimentalists. Look for collimated $B\bar{D}$.
- ▶ Future analysis of $ud\bar{b}\bar{c}$ would be useful. Different action?

Back up

Type $(\psi \phi \theta \omega)$	$I(J)^P$	Diquark-Antidiquark	Dimeson
			$M(\gamma_5, \gamma_i) - N(\gamma_5, \gamma_i)$
		$D(\gamma_5, \gamma_i), D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$M(I, \gamma_i \gamma_5) - N(I, \gamma_i \gamma_5)$
udcb/udsb/udsc	$0(1)^+$		$O(\gamma_5, \gamma_i) - P(\gamma_5, \gamma_i)$
		$E(\gamma_5, \gamma_i), E(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$O(I, \gamma_i \gamma_5) - P(I, \gamma_i \gamma_5)$
			$\epsilon_{ijk}M(\gamma_j, \gamma_k)$
	0(1)+		$M(\gamma_5, \gamma_i) - N(\gamma_5, \gamma_i)$
udbb	0(1)	$D(\gamma_5, \gamma_i), D(\gamma_t\gamma_5, \gamma_i\gamma_t)$	$M(I, \gamma_i \gamma_5) - N(I, \gamma_i \gamma_5)$
			$M(\gamma_5, \gamma_i), M(I, \gamma_i \gamma_5)$
lsbb/ucbb/scbb	$\frac{1}{2}(1)^+$	$D(\gamma_5, \gamma_i), D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$N(\gamma_5, \gamma_i), N(I, \gamma_i \gamma_5)$
			$\epsilon_{ijk}M(\gamma_j, \gamma_k)$
uscb	$\frac{1}{2}(1)^+$	$D(\gamma_5, \gamma_i), \ D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$M(\gamma_5, \gamma_i), M(I, \gamma_i \gamma_5)$
			$N(\gamma_5, \gamma_i), N(I, \gamma_i \gamma_5)$
		F() F()	$O(\gamma_5, \gamma_i), O(I, \gamma_i \gamma_5)$
		$E(\gamma_5, \gamma_i), E(\gamma_t\gamma_5, \gamma_i\gamma_t)$	$\epsilon_{ijk}M(\gamma_j, \gamma_k)$

TABLE I: $J^P = 1^+$ operators used in this work.

Type $(\psi \phi \theta \omega)$	$I(J)^P$	Diquark-Antidiquark	Dimeson
udcb/udsb/udsc	$0(0)^+$	$E(\gamma_5,\gamma_5), E(\gamma_t\gamma_5,\gamma_t\gamma_5)$	$M(\gamma_5,\gamma_5)-N(\gamma_5,\gamma_5)$
			M(I, I) - N(I, I)
			$M(\gamma_i, \gamma_i)$
uscb	$\frac{1}{2}(0)^+$	$E(\gamma_5,\gamma_5), E(\gamma_t\gamma_5,\gamma_t\gamma_5)$	$M(\gamma_5, \gamma_5), M(I, I)$
			$N(\gamma_5, \gamma_5), N(I, I)$
			$M(\gamma_i, \gamma_i)$

$$\begin{split} D(\Gamma_1,\Gamma_2) &= (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T), \\ E(\Gamma_1,\Gamma_2) &= (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T - \bar{\theta}_b C \Gamma_2 \bar{\omega}_a^T), \\ M(\Gamma_1,\Gamma_2) &= (\bar{\theta} \Gamma_1 \psi) (\bar{\omega} \Gamma_2 \phi), \qquad N(\Gamma_1,\Gamma_2) &= (\bar{\theta} \Gamma_1 \phi) (\bar{\omega} \Gamma_2 \psi), \\ O(\Gamma_1,\Gamma_2) &= (\bar{\omega} \Gamma_1 \psi) (\bar{\theta} \Gamma_2 \phi), \qquad P(\Gamma_1,\Gamma_2) &= (\bar{\omega} \Gamma_1 \phi) (\bar{\theta} \Gamma_2 \psi). \end{split}$$

Back up

$$\Delta E = \frac{C_0}{2r} + C_1^{ud} + C_2^{ud}(2r) + 23 \text{ MeV } r \qquad (1$$

for the $ud\overline{b}\overline{b}'$ case, where the first term represents the Coulomb binding contribution, the second the good-ud-diquark attraction, the third the residual heavy-light interactions in the tetraquark state and the fourth the two-meson threshold contribution. The numerical value appearing in the fourth term follows from the observed meson splittings. Similarly, for the $ud\overline{b}$ case, one expects the form

$$\Delta E = \frac{C_0}{1+r} + C_1^{ud} + C_2^{ud}(1+r) + (34 \text{ MeV} - 11 \text{ MeV} r) \qquad (2)$$

to provide a good representation for $m_{b'} > m_b$ and the form

$$\Delta E = \frac{C_0}{1+r} + C_1^{ud} + C_2^{ud} (1+r) + (34 \text{ MeV} r - 11 \text{ MeV}) \qquad (3)$$

to provide a good representation for $m_{b'} < m_b$. The corresponding expectations for the cases involving an ℓs , rather than ud, good-diquark are

$$\Delta E = \frac{C_0}{2r} + C_1^{\ell s} + C_2^{\ell s} (2r) + 24 \text{ MeV } r \tag{4}$$

for $\ell s \bar{b}' \bar{b}'$,

$$\Delta E = \frac{C_0}{1+r} + C_1^{\ell s} + C_2^{\ell s} (1+r) + (34 \text{ MeV} - 12 \text{ MeV}r)$$
(5)

for $\ell s \bar{b}' \bar{b}$ with $m_{b'} > m_b$ and

$$\Delta E = \frac{C_0}{1+r} + C_1^{\ell s} + C_2^{\ell s} (1+r) + (36 \text{ MeV} r - 11 \text{ MeV})$$
(6)

for $\ell s \bar{b}' \bar{b}$ with $m_{b'} < m_b$.

