Tetraquarks $\bar{b}\bar{b}ud$, $I(J^P) = 0(1^-)$ and $\bar{b}\bar{c}ud$ with $I(J^P) = 0(0^+)$, $0(1^+)$ from Lattice QCD Static Potentials

Jakob Hoffmann, Lasse Müller, Marc Wagner

Goethe University, Frankfurt am Main

Lattice 2024 Liverpool, 07/30/2024

Jakob Hoffmann

Outline

- 1) Introduction
- 2) Tetraquark $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^-)$
- 3) Tetraquark $\overline{b}\overline{c}ud$ with $I(J^P) = 0(0^+), 0(1^+)$

Why are Tetraquarks interesting?

- In 2013 the X(3872) was discovered which could not be explained by ordinary mesons
- Experimentally established candidate T_{cc}^+ with quantum numbers $I(J^P) = O(1^+)$
- Antiheavy-Antiheavy-Light-Light tetraquark bound states T_{bb} and T_{bc} were studied with lattice QCD and finite volume scattering
- A $\overline{b}\overline{b}ud$ tetraquark resonance with $I(J^P) = 0(1^-)$ was predicted using lattice QCD potentials and scattering theory [**Bicudo et al, 1704.02383**]

 T_{cc}^+ scattering phase shift from **2202.10110**

T_{bc} scattering phase shift from 2312.02925

 T_{cc}^+ peak in $D^0 D^0 \pi^+$ cross section taken from **2109.01038**

Jakob Hoffmann

Static Potentials from Lattice QCD

• Static potentials are extracted via the asymptotic behavior of a temporal correlation function at fixed spatial separation r

$$C_{BB}(t) = \left\langle \Omega \left| O_{BB}(t,r) O_{BB}^{\dagger}(0,r) \right| \Omega \right\rangle \sim \exp(-V_X(r)t), \qquad t \to \infty$$

 $O_{BB}(t,r) = (CL_q)_{\alpha\beta}(CS_Q)_{\gamma\delta}(\bar{Q}^a{}_{\gamma}(t,r)q^a{}_{\alpha}(t,r))(\bar{Q}^b{}_{\delta}(t,0)q^b{}_{\beta}(t,0)) \qquad \text{[Bicudo et al, 1510.03441]}$

- Different combinations of light-quark spin ${\rm L}_q$ and heavy-quark spin ${\rm S}_Q$ correspond to different operators ${\rm O}_{BB}$

- One attractive potential V_5 and one repulsive potential V_j
- Parametrization of potentials:

$$V_X(r) = \pm \frac{\alpha_X}{r} e^{-\left(\frac{r}{d_X}\right)^2}, \qquad X \in \{5, j\}$$

 α_X : strength, d_X : depth

Lattice 2024, Liverpool, 07/30/2024

Jakob Hoffmann

Our Approach: Lattice QCD + Born Oppenheimer

- Main idea : divide study into two independent steps
 - 1) Compute static potentials between heavy \overline{b} -quarks in the presence of light quarks using methods from lattice QCD (see P. Bicudo's talk on "Antistatic-antistatic-light-light tetraquark potentials with u, d and s quarks from lattice QCD")
 - 2) Insert potentials into a \overline{bb} Schroedinger equation and look for poles in the scattering amplitude to detect bound states or resonances (content of this talk)

Tetraquark $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^-)$

Jakob Hoffmann

Previous Work

- In **Bicudo et al,1704.02383** a resonance pole was found at $Re(E) = 17^{+4}_{-4}$ MeV above the BB threshold using lattice QCD Static potentials and methods from scattering theory
- Resonance has orbital angular momentum L = 1 (p-wave) and $I(J^P) = O(1^-)$
- In Bicudo et al,1704.02383 heavy quark spin effects were neglected (Degenerate masses of B and B* mesons)

Pole of scattering amplitude from Bicudo et al, **1704.02383**

Jakob Hoffmann

Including Heavy-Quark Spin Effects

- Different quark bilinears can be mapped to linear combinations of the pseudoscalar B- and vector B^{*} mesons using Fierz identities
- Heavy spin effects introduce mass splitting $m_{B^*}-m_B \approx 45 \text{ MeV}$
- Coupling of different meson-meson combination leads to 16 x 16 Schroedinger equation
- 16 x 16 equation can be block diagonalized by considering the total spin S of the system
- Most promising candidate is 2 x 2 equation with total spin S=0 (contains 1704.02383)

$$\begin{bmatrix} \begin{pmatrix} 2m_B & 0\\ 0 & 2m_{B^*} \end{pmatrix} - \frac{\hbar^2}{2\mu} \Delta \, \mathbb{1}_{2\times 2} + V_{2\times 2}(r) \end{bmatrix} \vec{\psi}_{2\times 2}(\vec{r}) = E\vec{\psi}_{2\times 2}(\vec{r})$$

$$V_{2\times 2}(r) = \frac{1}{4} \begin{pmatrix} V_5(r) + \frac{3V_j(r)}{\sqrt{3}} & \sqrt{3} \left(V_5(r) - V_j(r)\right) \\ \sqrt{3} \left(V_5(r) - V_j(r)\right) & \frac{3V_5(r) + V_j(r)}{\sqrt{3}} \end{pmatrix}$$

$$\vec{\psi}_{2\times 2}(\vec{r}) \cong \begin{pmatrix} \mathsf{BB} \\ \frac{1}{\sqrt{3}}B_j^*B_j^* \end{pmatrix}$$

Jakob Hoffmann

Two-Channel Scattering Formalism

- For general Energies $E>2m_B$ the system can be cast as a scattering problem with two channel momenta k and k*
- Decompose scattering problem into an incident partial wave $\vec{\psi_0}(\vec{r})$ and an emergent spherical wave $\vec{\chi}(\vec{r})$

$$\vec{\psi}(\vec{r}) = \sum_{L,m} \begin{pmatrix} A_{BB} j_L(kr) + \chi_{BB}(r)/r \\ A_{B^*B^*} j_L(k^*r) + \chi_{B^*B^*}(r)/r \end{pmatrix} Y_{L,m}(\theta,\phi)$$

• Projecting out L=1 contribution leads to the radial equation

$$\begin{bmatrix} \begin{pmatrix} 2m_B & 0\\ 0 & 2m_{B^*} \end{pmatrix} - \frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{2}{r^2} \right) + V_{2\times 2} - E \end{bmatrix} \begin{pmatrix} \chi_{BB}(r)\\ \chi_{B^*B^*}(r) \end{pmatrix} = - \begin{pmatrix} \left(\frac{V_5 + 3V_j}{4} \right) rA_{BB}j_1(kr) + \frac{\sqrt{3}}{4}(V_5 - V_j)rA_{B^*B^*}j_1(k^*r) \\ \frac{\sqrt{3}}{4}(V_5 - V_j)rA_{BB}j_1(kr) + \left(\frac{3V_5 + V_j}{4} \right) rA_{B^*B^*}j_1(k^*r) \end{pmatrix}$$

Jakob Hoffmann

Boundary Conditions and T Matrix

 We impose scattering boundary conditions for large r on each emergent wave component for pure BB and pure B*B* incident wave configurations

 $\chi_{\alpha}(r) \propto irt_{BB;\alpha} h_{\ell}^{(1)}(k_{\alpha}r)$ $\chi_{\alpha}(r) \propto irt_{B^*B^*;\alpha} h_{\ell}^{(1)}(k_{\alpha}r)$

for $(A_{BB}, A_{B^*B^*}) = (1, 0)$ for $(A_{BB}, A_{B^*B^*}) = (0, 1)$

• 2 x 2 T matrix defined via $t_{\beta;\alpha}$ components

$$\mathbf{T} = \begin{pmatrix} t_{BB;BB} & t_{BB;B^*B^*} \\ t_{B^*B^*;BB} & t_{B^*B^*;B^*B^*} \end{pmatrix}$$

- Bound states correspond to real axis T matrix poles on the first Riemann sheet
- **Resonances** correspond to T matrix poles with nonzero imaginary energy

Jakob Hoffmann

Pole Search in the Complex Plane

- Schroedinger equation solved for complex energies with standard Runge-Kutta 4th + shooting method
- Poles correspond to roots of 1/det(**T**)
- Resonance found with $\text{Re}(E) 2m_B = 94.4^{+8.6}_{-9.8}$ MeV and $\Gamma = 140^{+30}_{-38}$ MeV
- Resonance is located 4 MeV above the B*B* threshold

• Change of 76MeV in real part of energy compared to resonance found in Bicudo et al , 1704.02383 is explained on the following slides

Jakob Hoffmann

Varying the Potential Matrix

• Potential matrix has a rotation matrix like structure with rotation angle $\theta = \pi/3$

$$V_{2\times 2} = \begin{pmatrix} \cos^2(\theta)V_5 + \sin^2(\theta)V_j & \sin(\theta)\cos(\theta)(V_5 - V_j)\\ \sin(\theta)\cos(\theta)(V_5 - V_j) & \sin^2(\theta)V_5 + \cos^2(\theta)V_j \end{pmatrix}$$

[J. Hoffmann, M. Wagner, unpublished ongoing work]

- For $\theta = 0$ and $\theta = \pi/2$ poles are found with same width but differ by $2m_{B*}$ in the real energy
- For $\theta \in [0^\circ; 36^\circ)$ width increases, reaches a maximum at $\theta = 36^\circ$, decreases for $\theta \in (36^\circ; 90^\circ]$
- Pole trajectory is a result of splitting of the attractive potential between the channels
- Maximum in width naively expected at $\theta = \pi/4$

Lattice 2024, Liverpool, 07/30/2024

Jakob Hoffmann

Varying the Heavy-Quark Mass and the Mixing Angle

- Mass splitting decreases for heavier than physical $m_b=\kappa m_{b,phys}\,$ according to the HQET relation $m_{B*}-m_B\propto 1/\kappa$
- Decreasing mass splitting is an effective attractive contribution to the potential
- It is possible to vary θ and κ simultaneously
- For each $\theta \in \{0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, 70^{\circ}, 80^{\circ}, 90^{\circ}\}$ the parameter κ was varied

- Bound states start to appear for large enough *κ*
- Slope of boundary correlated with splitting of attractive potential

Lattice 2024, Liverpool, 07/30/2024

Jakob Hoffmann

Meson Composition

• Meson channel percentages given by wave function

$$\% X = \frac{X}{\% BB + \% B^* B^*}, \quad X = \int_0^{r_{\max}} |\chi_X(r)|^2 \, dr, \quad X \in \{BB, B^* B^*\}$$
[Hoffmann et al, 2211.15765]

- Competition between the ore attractive B*B* channel and the lower mass in the BB channel
- At $\theta = \pi/3$ the composition is approximately 50%-50%
- Transition point is shifted by mass splitting to larger angles θ

Jakob Hoffmann

Finite Volume Scattering Study

- Full dynamical lattice QCD study consists of two steps
 - 1) Calculation of ground state and excited finite volume energy levels
 - 2) Solution of two-particle quantization condition (QC2)
- Full lattice QCD study for the $I(J^P) = O(1^-)$ resonance bears following complications
 - Coupled channel scattering of BB and B*B*
 (see related talk by Travis White on coupled channel DD* and D*D* scattering)
 - Left hand cut effects due to one- and two pion exchange in B*B* channel (see related talks by A. Raposo and S. Aoki)
 - Effects from three particle $BB\pi$ channel (50 MeV above B^*B^* threshold) (see related talks by **Stephe Sharpe** and **Sebastian Dawid** on $\eta\pi\pi + \overline{K}K\pi$ and $DD\pi$ scattering)
- $I(J^P) = O(1^-)$ resonance : another application of three particle formalism?

Tetraquark $\overline{b}\overline{c}ud$ with $I(J^P) = 0(0^+), 0(1^+)$

Jakob Hoffmann

Coupled Channel Scattering for $\bar{b}\bar{c}ud$, $J^{P} \in \{0^{+}, 1^{+}\}$

- Two heavy flavors $Q \in \{b, c\}$ can be combined symmetrically or antisymmetrically
- Tetraquark with $J^P = 0^+$ results from antisymmetric heavy flavor
- Two-channel equation for $J^P = 0^+$ with mesonic channels BD, B*D*, three-channel equation for $J^P = 1^+$ with mesonic channels B*D, BD*, B*D*

$$\begin{bmatrix} \begin{pmatrix} m_B + m_D & 0 \\ 0 & m_{B^*} + m_{D^*} \end{pmatrix} - \frac{1}{2\mu_{bc}} \begin{pmatrix} d^2 \\ dr^2 - \frac{L(L+1)}{r^2} \end{pmatrix} \otimes \mathbb{1}_{2 \times 2} + H_{\text{int}} \end{bmatrix} \begin{pmatrix} \chi_{BD}(r) \\ \chi_{B^*D^*}(r) \end{pmatrix} \\ = -\frac{r}{4} \begin{pmatrix} (V_5 + 3V_j) \ \alpha_{BD}j_L(k_{BD^*}r) + \sqrt{3}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{3}(V_5 - V_j) \ \alpha_{BD}j_L(k_{BD}r) + (3V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \end{pmatrix}$$

$$= -\frac{r}{4} \begin{pmatrix} (V_5 + 3V_j) \ \alpha_{BD}j_L(k_{BD}r) + (V_j - V_5) \ \alpha_{BD}j_L(k_{BD^*}r) + \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{BD}j_L(k_{BD}r) + (3V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \end{pmatrix}$$

$$= -\frac{r}{4} \begin{pmatrix} (V_5 + 3V_j) \ \alpha_{BD}j_L(k_{BD}r) + (V_j - V_5) \ \alpha_{BD}j_L(k_{BD^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{BD^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{BD^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{BD^*}r) + 2(V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) + 2(V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) + 2(V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) + 2(V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{BD^*}j_L(k_{B^*D^*}r) + 2(V_5 + V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) + \sqrt{2}(V_j - V_5) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) + \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) + \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) + \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*}r) \\ \sqrt{2}(V_5 - V_j) \ \alpha_{B^*D^*}j_L(k_{B^*D^*$$

Jakob Hoffmann

Coupled Channel Scattering for $\bar{b}\bar{c}ud$, $J^{P} \in \{0^{+}, 1^{+}\}$

- Naive treatment with one channel equation leads to a bound state with binding energy $\Delta E \approx -0.9$ MeV (consistent with weakly bound state predictions from [1-2])
- For treatment with heavy spin effects :
 - Virtual bound state is found for $J^P = 0^+$ at 106MeV below BD threshold on (-,+) Riemann sheet
 - Virtual bound state is found for $J^P = 1^+$ at 100MeV below B*D threshold on (-,+,+) Riemann sheet

[1] Alexandrou et al, 2312.02925[2] Padmanath et al, 2307.14128

Summary

Tetraquark $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^-)$:

- Resonance was found 4 MeV above the B*B* threshold
- Resonance has nearly equal BB and B*B* percentages

Tetraquark $\overline{b}\overline{c}ud$ with $I(J^P) = 0(0^+), 0(1^+)$:

- Virtual bound state found for $J^P = 0^+$ at 106 MeV below BD threshold
- Virtual bound state found for $J^P = 1^+$ at 100 MeV below B*D threshold
 - Attractive potentials appear to be too weak (see P. Bicudo's talk)

Questions?

Backup

Left Hand Cut Problem

- One pion exchange invalidates QC2 below t- and u-channel branch points
- QC2 can be replaced by modified two particle quantization condition

 $\det[S(P_j,L)^{-1} + \xi^{\dagger} \mathcal{K}_{os}(P_j)\xi + 2(g_{B^*B^*\pi})^2 \mathcal{T}(P_j)] = 0 \qquad [\text{Hansen et al, 2311.18793}]$

• Possible Lagrangian respecting all symmetries is

 $\mathcal{L}_{B^*B^*\pi} = g_{B^*B^*\pi} \epsilon^{\mu\nu\alpha\beta} \partial_\mu B^{*+}_\nu \partial_\alpha B^{*0}_\beta \pi^-$

- Does not rely on specific Effective field theory models
- Scattering amplitude must be extracted via Integral equations

Jakob Hoffmann

Varying Only the Heavy-Quark Mass

- We vary not only the potential matrix but also the heavy quark mass
- Mass splitting decreases for heavier than physical $m_b=\kappa m_{b,phys}\,$ according to the HQET relation $m_{B*}-m_B\propto 1/\kappa$
- Decreasing mass splitting is an effective attractive contribution to the potential

- Resonances found for $\kappa \in [1.0; 2.82)$
- For $\kappa > 2.82$ bound states exist

Jakob Hoffmann