Beautiful exotics in a non-perturbatively tuned Lattice NRQCD setup

Daniel Mohler

Technische Universität Darmstadt

Liverpool, July 30, 2024

With R.J. Hudspith

- ∢ ≣ →

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

Liverpool, July 30, 2024

1/17

Two types of beautiful exotics

• The B_s cousins of the $D^*_{s0}(2317)$ and $D_{s1}(2460)$

- $D_{s0}^*(2317)$ and $D_{s1}(2460)$ observed as narrow peaks at the B-factories
- Striking example of heavy-quark hadrons not well described by naive quark models
- Their B_s cousins are not yet seen in experiment and can be predicted
- 2 The $I(J^P) = 0(1^+) u d\bar{b}\bar{b}$ tetraquark, the T_{bb}
 - Most concrete pure-tetraquark candidate phenomenologically and from the lattice
 - Cousin of the T_{cc} but likely has quite different physics T_{bb} bound by ≈ 100 MeV, T_{cc} by 360 KeV
 - In the diquark picture:
 - "Good" light diquark $(u^T C \gamma_5 d)$ lighter diquark increases binding
 - Color-Coulomb heavy antidiquark $(\bar{b}C\gamma_i\bar{b}^T)$ deeper binding as heavy mass gets heavier

2/17

NRQCD action

Typical tadpole-improved NRQCD action (here we will use n=4)

Lepage et al., PRD 46, 4052-4067 (1992)

$$H_{0} = -\frac{1}{2aM_{0}}\Delta^{2},$$

$$H_{I} = \left(-c_{1}\frac{1}{8(aM_{0})^{2}} - c_{6}\frac{1}{16n(aM_{0})^{2}}\right)\left(\Delta^{2}\right)^{2} + c_{2}\frac{i}{8(aM_{0})^{2}}\left(\tilde{\Delta}\cdot\tilde{E} - \tilde{E}\cdot\tilde{\Delta}\right) + c_{5}\frac{\Delta^{4}}{24(aM_{0})}$$

$$H_{D} = -c_{3}\frac{1}{8(aM_{0})^{2}}\sigma\cdot\left(\tilde{\Delta}\times\tilde{E} - \tilde{E}\times\tilde{\Delta}\right) - c_{4}\frac{1}{8(aM_{0})}\sigma\cdot\tilde{B}$$

$$\delta H = H_{I} + H_{D}.$$

Propagators generated through symmetric evolution equation

$$G(x,t+1) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n \tilde{U}_t(x,t_0)^{\dagger} \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right) G(x,t).$$

• We also tune a $\mathcal{O}(v^6)$ action with tree-level coefficients for the higher order terms

Daniel Mohler (TUDa)

Neural net (RHQ and) NRQCD tuning and setup

R.J. Hudspith, DM, PRD 106, 034508 (2022) R.J. Hudspith, DM, PRD 107, 114510 (2023)

- Calculate runs with a random distribution for the action parameters
- Let the neural network make parameter predictions
- Due to additive mass we must only consider splittings → we subtract the η_B from all states
- Perform tuning at SU(3)_f-symmetric point
- Gauge-fixed wall sources
- Tuning precision is about 1%

Figure: Schematic picture of our NRQCD setup

A = A = A = A = A = A

NRQCD Neural Net Tuning: Stable s- and p-wave bottomonia

- Higher S- and P-wave states serve as a check whether our tuning leads to reasonable results
- Main results from the lattice spacing of U103; H200 used to estimate systematics

Daniel Mohler (TUDa)

Liverpool, July 30, 2024

B_s : Chiral – infinite volume extrapolation

- We explore the previously predicted $J^P = 0^+$ and 1^+ bound states
- We use simple single-hadron interpolators with gauge-fixed wall sources and smeared sinks
- Mainly the CLS TrM = const trajectory and 2 $m_S = const$ ensembles

Combined extrapolation:

$$\Delta_{B_{s0}^*/B_{s1}}(\Delta\phi_2, m_K L, a) = \Delta_{B_{s0}^*/B_{s1}}(0, \infty, a) \left(1 + A\Delta\phi_2 + Be^{-m_K L}\right)$$
$$\Delta\phi_2 = \phi_2^{\text{Lat}} - \phi_2^{\text{Phys}} \quad ; \quad \phi_2 = 8t_0 m_\pi^2$$

Systematic uncertainties and final result

Resulting binding energies:

$$\begin{split} &\Delta_{B_{s0}^*}(0,\infty,0) = -75.4(3.0)_{\text{Stat.}}(13.7)_{\text{a}} \text{ [MeV]}, \\ &\Delta_{B_{s1}}(0,\infty,0) = -78.7(3.7)_{\text{Stat.}}(13.4)_{\text{a}} \text{ [MeV]}. \end{split}$$

- Small uncertainty from statistics + combined extrapolation
- Largest systematics from usage of NRQCD/discretization effects
- Central value shifted by applying half the mass difference between H200 and U103
- All other explored uncertainties (finite volume shapes, modified quark-mass dependence, etc.) small

A = A = A = A = A = A

Comparison to the literature

• Results agree well with models based on unitarized χPT

• Improved uncertainty estimate over older Lattice calculations

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

-

T_{bb} – Basis and effective masses (on N101)

$$D = (u_a{}^T C \gamma_5 d_b)(\bar{b}_a C \gamma_i \bar{b}_b^T), \quad E = (u_a{}^T C \gamma_t \gamma_5 d_b)(\bar{b}_a C \gamma_i \gamma_t \bar{b}_b^T),$$

$$M = (\bar{b}\gamma_5 u)(\bar{b}\gamma_i d) - [u \leftrightarrow d], \quad N = (\bar{b}Iu)(\bar{b}\gamma_5 \gamma_i d) - [u \leftrightarrow d].$$

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

Liverpool, July 30, 2024

-

Combined mass and volume extrapolations

• Ansatz for a deeply-bound state:

$$\Delta_{ud\bar{b}\bar{b}}(\Delta\phi_2, m_{\pi}L, a) = \Delta_{ud\bar{b}\bar{b}}(0, \infty, a)(1 + A\Delta\phi_2 + Be^{-m_{\pi}L}).$$

• Strong $e^{-m_{\pi}L}$ volume effects and deeper binding at lighter pion mass.

Daniel Mohler (TUDa)

Varying the NRQCD tuning

Figure: Alternative tuning strategies with/without B-mesons and higher-order terms (left). Clear correlation of the $B^* - B$ splitting with the T_{bb} binding. (right)

- Simultaneously reproducing both hyperfine splittings seems impossible
- Tree-level performs poor; For our strategies higher order terms help.
- Shallower T_{bb} binding with increased $B^* B$ splitting.

Daniel Mohler (TUDa)

T_{bb} – quantifying systematics

 $\Delta_{ud\bar{b}\bar{b}}(0,\infty,0) = -112.0(2.7)_{\text{Stat.}}(4.5)_{\chi}(11.6)_a(3.3)_{B^*-B}$

- (..)_a uncertainty from comparison of the results for two lattice spacings (H200 vs. U103)
- Two leading systematic uncertainties come from discretization effects/ the use of Lattice NRQCD!

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

Overview of Lattice $I(J^P) = 0(1^+) T_{bb}$ determinations

- Red: Static b-quarks; Black: Lattice NRQCD b quarks
- Interesting playground for understanding systematic uncertainties!

Daniel Mohler (TUDa)

T_{bbs} – Basis and effective masses

$$M = (\bar{b}\gamma_5 u)(\bar{b}\gamma_i s), \quad N = (\bar{b}Iu)(\bar{b}\gamma_5\gamma_i s)$$
$$O = (\bar{b}\gamma_5 s)(\bar{b}\gamma_i u), \quad P = (\bar{b}Is)(\bar{b}\gamma_5\gamma_i u)$$
$$Q = \epsilon_{ijk}(\bar{b}\gamma_j u)(\bar{b}\gamma_k s).$$

Liverpool, July 30, 2024

T_{bbs} – chiral and infinite volume extrapolation

• Chiral/infinite-volume Ansatz:

$$\Delta_{\ell s \bar{b} \bar{b}} (\Delta \phi_2, m_K L, a) = \Delta_{\ell s \bar{b} \bar{b}} (0, \infty, a) \left(1 + A \Delta \phi_2 + B e^{-m_K L} \right)$$

- Large $e^{-m_K L}$ volume effects.
- Consistent with light-diquark picture.

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

Overview of lattice T_{bbs} determinations

• Close/overlapping EM threshold $BB_s\gamma$, still possible that it is narrow and decays weakly

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

→ ∢ ≣ Liverpool, July 30, 2024 16/17

EL OQO

Conclusions and Outlook

- Positive-parity heavy-light mesons
 - NRQCD calculation with full uncertainty estimate for B_0^* and B_{s1} \rightarrow refined predictions for LHCb, BelleII
- Explicitly exotic heavy-quark tetraquarks
 - Lattice QCD is good at determining deeply-bound states and can rule out phenomenological models for states not yet observed in experiment
 - The calculations are systematically-improvable and we are seeing convergence for the easiest-to-compute quantities such as the T_{bb}
 - The smoking-gun tetraquark state T_{bb} is very difficult to see in current experiments; it is worth exploring weaker-bound candidates such as T_{bc}
 - More and more indications that the multi-quark exotic spectrum at heavy masses is diverse
- Systematics from using Lattice NRQCD is now limiting our predictions for these states.
- Calculation could be further improved with RHQ action (work in progress)

Input used for the tuning

Consider only quark-line connected parts of simple meson operators

 $O(x) = (\bar{b}\Gamma(x)b)(x),$

State	PDG mass [GeV]	$\Gamma(x)$
$\eta_b(1S)$	9.3987(20)	γ_5
$\Upsilon(1S)$	9.4603(3)	γ_i
$\chi_{b0}(1P)$	9.8594(5)	$\sigma \cdot \Delta$
$\chi_{b1}(1P)$	9.8928(4)	$\sigma_j \Delta_i - \sigma_i \Delta_j \ (i \neq j)$
$\chi_{b2}(1P)$	9.9122(4)	$\sigma_j \Delta_i + \sigma_i \Delta_j \ (i \neq j)$
$h_b(1P)$	9.8993(8)	Δ_i

Table: Table of lattice operators used and their continuum analogs.

Comparison of b and c parameters - c_E and c_B

Figure: RHQ clover terms c_E and c_B for **bottom** and **charm**

As a rule of thumb $c_E \approx c_{SW}$, $c_B > c_E$. No big difference between bottom and charm!

Daniel Mohler (TU	Da)	
-------------------	-----	--

Comparison of b and c parameters - κ, r_s, ν

Figure: RHQ action terms r_s , ν , κ for **bottom** and **charm**

Daniel Mohler (TUDa)

Beautiful exotics with NRQCD

Liverpool, July 30, 2024

EL OQO

CLS ensembles used for heavy-light mesons

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Ensemble	Mass trajectory	$L^3 \times L_T$	$N_{\rm Conf} \times N_{\rm Prop}$
U103	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	1000×23
H101	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×12
U102	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	732×18
H102	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
U101	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	600×18
H105	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
N101	$\operatorname{Tr}[M] = C$	$48^3 \times 128$	537×18
C101	$\operatorname{Tr}[M] = C$	$48^3 \times 96$	400×16
H107	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H106	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H200	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×28

Liverpool, July 30, 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

21/17