$DK/D\pi$ scattering and an exotic virtual bound state from lattice QCD

Daniel Yeo Based on arXiv:2403.10498 in collaboration with Christopher Thomas, David Wilson

DAMTP University of Cambridge

Open-charm $J^P = 0^+$ sector

Previous work

Many previous studies of $D\pi$ and DK S-wave scattering

- o D. Mohler et al. 1308.3175
- o C.B. Lang et al. 1403.8103
- o G. S. Bali et al. 1706.01247
- o C. Alexandrou et al. 1911.08435
- A. M. Torres et al. 1412.1706
- o L. Liu et al. 1208.4535
- o X.-Y. Guo et al. 1801.10122
- o Z.-H. Guo et al. 1811.05585
- o B. Huang et al. 2205.02619
- o M, F.M. Lutz et al. 2209.10601
- F. Gil-Domínguez et al. 2306.01848
- o D. Mohler et al. 1208.4059
- H.Yan et al. 2404.13479

Previous work

• Observed single poles in elastic $D\pi$ and DK amplitudes [G.K.C. Cheung *et al.* 2008.06432, G. Moir *et al.* 1607.07093, L. Gayer *et al.* 2102.04973]

- \circ m_{π} dependence? Recent $D\pi$ study near physical m_{π} [H. Yan *et al.* 2404.13479]
- Potential exotic poles? Virtual bound state in $Dar{K}|_{I=0}$ scattering
- $\,\circ\,$ Second pole in $D\pi$ scattering at higher energies?

Daniel Yeo

Flavour symmetric point

 $\circ m_u = m_d = m_s \Rightarrow$ Flavour SU(3) global symmetry

- ∘ $\{D\pi, DK, Ds\bar{K}, ...\} \in D_{\bar{3}}\eta_8$ scattering
- Flavour $\bar{\mathbf{3}} \sim c\bar{q}$
- \circ Flavour 6, $\overline{15} \sim c \bar{q} q \bar{q}$
- $\circ D_{\bar{\mathbf{3}}}\eta_{\mathbf{8}} S$ -wave $\rightarrow J^P = 0^+$

- $\,\circ\,$ Anisotropic lattices, $a_s/a_t\approx 3.5$
- $\,\circ\,$ 3 dynamical (light) + 1 quenched (charm) Wilson Clover fermions
- $\circ~m_u=m_d=m_spprox m_s^{phy} \Rightarrow m_\pipprox$ 700 MeV

$(L/a_s)^3 \times (T/a_t)$	$N_{\rm cfgs}$	$N_{\rm tsrcs}$	$N_{\rm vecs}$
$12^3 imes 96$	219	4	48
$14^3 imes 128$	397	4	64
$16^3 imes 128$	533	4	64
$18^3 imes 128$	358	4	96
$20^3 imes 128$	503	4	128
$24^3 imes 128$	607	4	160

- Volumes $L/a_s = \{16, 20, 24\}$ used in Lüscher analysis
- Single lattice spacing $a_t^{-1} = 4655$ MeV

Methodology

- Obtain finite-volume spectra from lattice QCD
- Constrain amplitudes via Lüscher quantisation condition [Lüscher, Sharpe, Hansen, Briceño ...]

$$\det\left[\mathbb{1}+i\rho(s)\cdot t(s)\cdot\left(\mathbb{1}+i\overline{\mathcal{M}}(s,L)\right)\right]=0$$

- Study singularity structure
 - Elastic amplitude has two Riemann sheets
 - Bounds states on physical sheet Im[k] > 0
 - Virtual bounds states and resonances on unphysical sheet Im[k] < 0

Flavour $\bar{\mathbf{3}}$ Sector

Finite-volume spectra

Operator basis

$$\begin{array}{l} \circ \ \ \mathcal{O}^{\dagger} \sim \bar{q} \mathbf{\Gamma} c \ \text{for} \ q \in \{u, d, s\} \\ \circ \ \ \mathcal{O}^{\dagger}_{\mathbb{M}_{1}\mathbb{M}_{2}}(\mathbf{P}) \sim \sum_{\mathbf{p}_{1}, \mathbf{p}_{2}} CG \ \Omega^{\dagger}_{\mathbb{M}_{1}}(\mathbf{p}_{1}) \ \Omega^{\dagger}_{\mathbb{M}_{2}}(\mathbf{p}_{2}) \end{array}$$

GEVP

$$\circ C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle \Rightarrow C_{ij}(t) v_j^{\mathbf{n}} = \lambda^{(\mathbf{n})}(t, t') C_{ij}(t') v_j^{\mathbf{n}}$$

$$\lambda^{(\mathbf{n})}(t, t') \sim e^{-E_{\mathbf{n}}(t-t')}$$

 Correlation functions computed in distillation framework [M. Peardon *et al.* 0905.2160]

Flavour $\bar{\mathbf{3}}$ Sector

 $\,\circ\,$ Up to inelastic threshold, [000] A_1^+ irrep $\,\sim\, J^P=0^+$

- $\circ \sim ar{q}c$ dominated state below threshold
- · Small upward shifts from non-interacting meson-meson energies

Daniel Yeo

Flavour $\bar{\mathbf{3}}$ Sector

Amplitudes and poles

Flavour 6 Sector

 $\bar{q} \Gamma c > 6 \Rightarrow$ manifestly flavour exotic

More constraints needed around threshold...

... include $[100]A_1, [110]A_1$ irreps

$[nmp]\Lambda$	$D_{\mathbf{\bar{3}}}\eta_{8}(2S+1}\ell_{J})$
[100]A ₁	${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, {}^{1}F_{3}, \dots$
[110]A ₁	${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, {}^{1}F_{3}, \dots$

Flavour 6 Sector

 $\bar{q} \Gamma c > 6 \Rightarrow$ manifestly flavour exotic

More constraints needed around threshold...

... include $[100]A_1, [110]A_1$ irreps

Flavour 6 Sector

Amplitudes and poles

· Virtual bound state near threshold

Flavour $\overline{15}$ Sector

• Again, manifestly flavour exotic

 $\circ \ \text{Only} \ \mathcal{O}_{\mathbb{M}_1\mathbb{M}_2}^{\dagger}(\textbf{P}) \sim \sum_{\textbf{p}_1,\textbf{p}_2} \textit{CG} \ \Omega_{\mathbb{M}_1}^{\dagger}(\textbf{p}_1) \ \Omega_{\mathbb{M}_2}^{\dagger}(\textbf{p}_2)$

• Resultant amplitudes show weak interactions

Daniel Yeo

- $\,\circ\,$ Flavour ${\bf \bar 3}$ pole appears to be consistent with quark model expectations
- $\circ~$ Contains (strange, isospin) $=(0,\frac{1}{2})$ and (1,0) components
- Breaking flavour SU(3)...

- $\,\circ\,$ Flavour ${\bf \bar 3}$ pole appears to be consistent with quark model expectations
- Contains (strange, isospin) = $(0, \frac{1}{2})$ and (1, 0) components
- Breaking flavour SU(3)...
 - ... $(0, \frac{1}{2})$ contributes to $D\pi$ scattering

- $\,\circ\,$ Flavour ${\bf \bar 3}$ pole appears to be consistent with quark model expectations
- $\circ~$ Contains (strange, isospin) $=(0,\frac{1}{2})$ and (1,0) components
- Breaking flavour SU(3)...
 - ... $(0, \frac{1}{2})$ contributes to $D\pi$ scattering
 - ... $(1, \overline{0})$ contributes to *DK* scattering

- $\circ\,$ Flavour exotic ${f 6}$ virtual bound state in qualitative agreement with UChPT
- (strange, isospin) = (-1, 0), $(0, \frac{1}{2})$ and (1, 1) components
- Breaking flavour SU(3)...

- $\,\circ\,$ Flavour exotic ${\bf 6}$ virtual bound state in qualitative agreement with UChPT
- $\circ~({\sf strange},~{\sf isospin})=(-1,0),~(0,\frac{1}{2})~{\sf and}~(1,1)~{\sf components}$
- Breaking flavour SU(3)...
 - ... $(0, \frac{1}{2})$ could also contribute to $D\pi$ scattering

 \Rightarrow potential two-pole structure!

- $\,\circ\,$ Flavour exotic ${\bf 6}$ virtual bound state in qualitative agreement with UChPT
- $\circ~({\sf strange},~{\sf isospin})=(-1,0),~(0,\frac{1}{2})$ and (1,1) components
- Breaking flavour SU(3)...
 - ... $(0, \frac{1}{2})$ could also contribute to $D\pi$ scattering
 - \Rightarrow potential two-pole structure!
 - ... however, only (-1,0) component seen in previous lattice studies

Summary and outlook

Summary

- $\circ~$ At $m_{\pi}\approx 700~MeV,~2$ poles found Bound state in $\bar{3}~\&~$ virtual bound state in 6
- $\,\circ\,$ Flavour ${\bf \bar 3}$ corresponds to poles in elastic $D\pi$ and DK scattering
- $\circ~$ Flavour ${\bf 6}~$ pole \rightarrow possible $D\pi$ two-pole structure \ldots
 - ... but need to study its light quark mass dependence

Outlook

- $\circ~D{\cal K}/D\pi$ scattering at flavour symmetric point with lower m_π
- $\circ~D\pi-D\eta-D_sar{K}$ scattering at closer to physical m_π
- $\,\circ\,$ Analogous studies of open charm $J^{P}=1^{+}$ scattering

Thank you for listening! Any questions?

- Flavour $\overline{15}$ results
 - $\circ~$ Fits represented as $k\cot\delta$

 $\circ~$ No significant energy dependence and no poles nearby \longrightarrow Weak interactions

Details of lattice action

- $\,\circ\,$ Using anisotropic lattices, $a_s/a_t\approx 3.5$
- 3 dynamical quarks (u,d,s) and 1 quenched (charm) quark
- Gauge sector: tree-level Symanzik-improved anisotropic action
- Fermion sector: tadpole-improved anisotropic Sheikholeslami-Wohlert (Clover) actionwith spatial stout-smearing
- Single lattice spacing $a_t^{-1} = 4655$ MeV

Stable $D_{\overline{3}}$ and $D_{\overline{3}}^*$ mesons

- Using $\mathcal{O}^{\dagger}(\mathbf{P}) \sim \sum_{\mathbf{x}} e^{-i\mathbf{P}\cdot\mathbf{x}} \bar{q} \mathbf{\Gamma} c$ for $q \in \{u, d, s\}$ in GEVP
- $\mathbf{P} = \frac{2\pi}{L} \mathbf{n}$ for $|\mathbf{n}|^2 \le 2, 3, 4$ on $L/a_s = 12, 14, \{16, 18, 20, 24\}$ volumes
- Fit to relativistic dispersion relation $(a_t E_n)^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi}{L/a_s} |\mathbf{n}|\right)^2$

Flavour 6 Sector subductions

• Additional data from $[100]A_1, [110]A_1$

 \rightarrow Include contributions from $J^P = 1^-, 2^+, 3^+$

[000] Λ^{P}	J ^P	Channel	$^{2S+1}\ell_J$				
$[000]A_1^+$	0 ⁺ , 4 ⁺ ,	$D_{\overline{3}}\eta_8$	¹ S ₀				
		÷	:				
$[000] T_1^-$	1 ⁻ , 3 ⁻ , 4 ⁻ ,	$D_{\bar{3}}\eta_8$	¹ P ₁ , ¹ F ₃	$[nmp]\Lambda$	$ \lambda ^{(\tilde{\eta})}$	Channel	$^{2S+1}\ell_J$
		$D_{\overline{3}}^*\eta_8$	${}^{3}P_{1}$, ${}^{3}F_{3}$, ${}^{3}F_{4}$	[100]A ₁	0 ⁺ , 4,	$D_{\overline{3}}\eta_8$	${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, {}^{1}F_{3}$
		÷	:			$D^*_{ar{3}}\eta_{ar{8}}$	³ P ₁ , ³ D ₂ , ³ F ₃ , ³ F ₄
[000]E ⁺	$2^+, \ 4^+, \ldots$	$D_{\overline{3}}\eta_8$	¹ D ₂			÷	:
		$D^*_{ar{3}}\eta_{ar{8}}$	³ D ₂	[110]A ₁	$0^+, 2, 4,$	$D_{ar{3}}\eta_{ar{8}}$	${}^{1}S_{0}$, ${}^{1}P_{1}$, ${}^{1}D_{2}$, ${}^{1}F_{3}$
		÷	:			$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}D_{3}, {}^{3}F_{3}, {}^{3}P_{2}, {}^{3}F_{2}, {}^{3}F_{4}$
[000] T ₂ ⁺	2 ⁺ , 3 ⁺ , 4 ⁺ ,	$D_{\bar{a}}\eta_8$	¹ D ₂			÷	:
		$D_{\bar{3}}^* \eta_8$	³ D ₂ , ³ D ₃				
		÷	:				

Flavour 6 Sector subductions

• Additional data from $[100]A_1, [110]A_1$

 \rightarrow Include contributions from $J^P = 1^-, 2^+, 3^+$

[000] A ^P	J^P	Channel	$^{2S+1}\ell_J$				
$[000]A_1^+$	0 ⁺ , 4 ⁺ ,	$D_{\bar{3}}\eta_8$	$^{1}S_{0}$				
		÷					
$[000] T_1^-$	1-, 3-, 4-,	$D_{\bar{3}}\eta_8$	¹ P ₁ , ¹ F ₃	$[nmp]\Lambda$	$ \lambda ^{(\tilde{\eta})}$	Channel	$^{2S+1}\ell_J$
		$D_{\overline{3}}^*\eta_8$	${}^{3}P_{1}$, ${}^{3}F_{3}$, ${}^{3}F_{4}$	[100]A ₁	0 ⁺ , 4,	$D_{\bar{3}}\eta_8$	$^{1}S_{0}, ^{1}P_{1}, ^{1}D_{2}, ^{1}F_{3}$
		:	:			$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}F_{3}, {}^{3}F_{4}$
[000]E ⁺	$2^+, 4^+,$	$D_{\overline{3}}\eta_8$	¹ D ₂			÷	:
		$D^*_{\bar{3}}\eta_{8}$	³ D ₂	[110]A ₁	$0^+, 2, 4,$	$D_{ar{3}}\eta_{ar{8}}$	$^{1}S_{0}, ^{1}P_{1}, ^{1}D_{2}, ^{1}F_{3}$
		÷	:			$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}D_{3}, {}^{3}F_{3}, {}^{3}P_{2}, {}^{3}F_{2}, {}^{3}F_{4}$
[000] T ₂ ⁺	2 ⁺ , 3 ⁺ , 4 ⁺ ,	$D_{\bar{2}}\eta_8$	¹ D ₂			÷	:
		$D_{\bar{3}}^* \eta_8$	${}^{3}D_{2}^{}, {}^{3}D_{3}^{}$				
		÷	:				

Flavour 6 Sector subductions

• Additional data from $[100]A_1, [110]A_1$

 \rightarrow Include contributions from $J^P = 1^-, 2^+, 3^+$

[000] A ^P	J^P	Channel	$^{2S+1}\ell_J$				
$[000]A_1^+$	0 ⁺ , 4 ⁺ ,	$D_{\overline{3}}\eta_8$	$^{1}S_{0}$]			
		:	÷				
$[000] T_1^-$	1-, 3-, 4-,	$D_{\bar{3}}\eta_8$	¹ P ₁ , ¹ F ₃	$[nmp]\Lambda$	$ \lambda ^{(\tilde{\eta})}$	Channel	$^{2S+1}\ell_J$
		$D_{\overline{3}}^*\eta_8$	${}^{3}P_{1}$, ${}^{3}F_{3}$, ${}^{3}F_{4}$	[100]A ₁	0 ⁺ , 4,	$D_{\bar{3}}\eta_8$	$^{1}S_{0}, ^{1}P_{1}, ^{1}D_{2}, ^{1}F_{3}$
		÷	÷			$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}F_{3}, {}^{3}F_{4}$
[000]E ⁺	$2^+, \ 4^+, \ldots$	$D_{\overline{3}}\eta_8$	¹ D ₂			÷	:
		$D^*_{\bar{3}}\eta_{8}$	³ D ₂	[110]A ₁	$0^+, 2, 4,$	$D_{\mathbf{\bar{3}}}\eta_{8}$	${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, {}^{1}F_{3}$
		÷	:			$D^*_{f 3}\eta_{f 8}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}D_{3}, {}^{3}F_{3}, {}^{3}P_{2}, {}^{3}F_{2}, {}^{3}F_{4}$
[000] T ₂ ⁺	2 ⁺ , 3 ⁺ , 4 ⁺ ,	$D_{\bar{a}}\eta_{B}$	¹ D ₂			÷	:
		$D_{\bar{3}}^* \eta_8$	³ D ₂ , ³ D ₃				
		÷	:				

Flavour 6 Sector subductions

• Additional data from $[100]A_1, [110]A_1$

 \rightarrow Include contributions from $J^P = 1^-, 2^+, 3^+$

[000] A ^P	J^P	Channel	$^{2S+1}\ell_J$				
$[000]A_1^+$	0 ⁺ , 4 ⁺ ,	$D_{\overline{3}}\eta_8$	$^{1}S_{0}$				
		:					
$[000] T_1^-$	1-, 3-, 4-,	$D_{\bar{3}}\eta_8$	$^{1}P_{1}, ^{1}F_{3}$	$[nmp]\Lambda$	$ \lambda ^{(\tilde{\eta})}$	Channel	$^{2S+1}\ell_J$
		$D_{\overline{3}}^*\eta_8$	$^{3}P_{1}$, $^{3}F_{3}$, $^{3}F_{4}$	[100]A ₁	0 ⁺ , 4,	$D_{\bar{3}}\eta_8$	$^{1}S_{0}, ^{1}P_{1}, ^{1}D_{2}, ^{1}F_{3}$
			:			$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}F_{3}, {}^{3}F_{4}$
[000]E ⁺	$2^+, 4^+,$	$D_{\overline{3}}\eta_8$	$^{1}D_{2}$			÷	:
		$D_{\overline{3}}^*\eta_{8}$	$^{3}D_{2}$	[110]A ₁	$0^+, 2, 4, \dots$	$D_{\mathbf{\bar{3}}}\eta_{8}$	$^{1}S_{0}, ^{1}P_{1}, ^{1}D_{2}, ^{1}F_{3}$
		÷				$D^*_{ar{3}}\eta_{ar{8}}$	${}^{3}P_{1}, {}^{3}D_{2}, {}^{3}D_{3}, {}^{3}F_{3}, {}^{3}P_{2}, {}^{3}F_{2}, {}^{3}F_{4}$
[000] T ₂ ⁺	2 ⁺ , 3 ⁺ , 4 ⁺ ,	$D_{\bar{3}}\eta_8$	$^{1}D_{2}$			÷	:
		$D_{\overline{3}}^*\eta_8$	${}^{3}D_{2}, {}^{3}D_{3}$				
		÷	÷				

• *P*-wave and *D*-wave suppression at threshold $\sim k^{2\ell}$ (in absence of poles)

- Fits with background wave contributions (dashed)
- Fits without background wave contributions (solid)
- $\circ~$ Negligible change in fits

Finite-volume spectra to amplitudes

- Parameterise *t*-matrix, $t(s; \alpha)$, with free parameters $\{\alpha\}$
- Solve lüscher quantisation condition

$$\det\left[\mathbb{1}+i\rho(s)\cdot t(s;\alpha)\cdot \left(\mathbb{1}+i\overline{\mathcal{M}}(s,L)\right)\right]=0 \ \Rightarrow \{E_{\mathbf{n}}^{\mathsf{pred}}[\alpha]\}$$

• Fit to obtained spectra, $\{E_n\}$, minimise

$$\chi^{2} = (\boldsymbol{E} - \boldsymbol{E}^{\mathsf{pred}})^{\mathsf{T}} \cdot \boldsymbol{C}_{\mathsf{cov}}^{-1} \cdot (\boldsymbol{E} - \boldsymbol{E}^{\mathsf{pred}})$$

keeping only 'reasonable fits', $\chi^2/\textit{N}_{\rm dof} < 2$

• Diverse set of parameterisations

List of parameterisations

- $k \cot \delta = \frac{1}{a} + \frac{1}{2}rk^2 + P_2k^4 + O(k^6)$
- K-matrix parameterisations $t^{-1}(E_{cm})_{ij} = \frac{1}{(2k_i)^{\ell_i}} K^{-1}(E_{cm})_{ij} \frac{1}{(2k_j)^{\ell_j}} + I(E_{cm})_{ij}$ where $Im[I(E_{cm})_{ij}] = -\rho(E_{cm})\delta_{ij}$

Two choices:

- □ Chew-Mandelstam prescription
- □ Phase-space prescription, $I(E_{cm}) = -i\rho(E_{cm})$