Extraction of S and P wave DD* scattering phase shift using twisted boundary conditions.

Masato Nagatsuka, Shoichi Sasaki (Tohoku University)

Motivation for investigating T_{cc}^+

• Experimental observation in a decay

 $T_{cc}^{+} \xrightarrow{D^{*0} D^{+}} D^{0} \pi^{0}$ $D^{*+} D^{0} \xrightarrow{D^{*+} D^{0}} D^{0} \pi^{+}$

with $cc\overline{u}\overline{d}$ $I(J^P) = 0(1^+).$

 Some lattice QCD calculations imply the existence of T⁺_{cc} as the bound state of D and D*.

> HALQCD, Phys. Rev. Lett. 131, 161901 (2023) S. Collins et al, Phys. Rev. D 109, 094509 (2024)

Nucleon-Nucleon scattering

 The behavior of scattering phase shift at low energy plays a significant role as a signal of a bound state (Levinson's theorem).

- We calculate scattering phase shifts by Lüscher's method.
- We access the detailed low energy information by employing the twisted boundary conditions.

Lüscher's formula(1dim)

Under the twisted boundary condition.

$$\left(\frac{-1}{m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi(x) = E\psi(x)$$

Solutions in |x| > R

$$\psi(x) = e^{-ik|x|} + e^{2i\delta(k)}e^{ik|x|}, \qquad E = \frac{k^2}{m}$$
Quantization cond.

$$\Psi$$
Twisted BC : $e^{i\theta}\psi(x - \frac{L}{2}) = \psi(x + \frac{L}{2})$

$$e^{2i\delta(k)}e^{ikL} = e^{i\theta} \leftrightarrow \delta(k) + kL = 2\pi n + \theta \ (n \in \mathbb{Z})$$

$$\delta(k) \text{ in } 0 < k < 2\pi/L \text{ is calculable by changing } \theta$$

R

without using other large volume gauge configurations.

Lüscher's formula(3dim)

Under the twisted boundary condition (up to P wave).

$$\begin{vmatrix} \cot \delta_0(k) - M_{SS}^{\vec{\theta}}(q) & M_{SP}^{\vec{\theta}}(q) \\ M_{SP}^{\vec{\theta}}(q) & \cot \delta_1(k) - M_{PP}^{\vec{\theta}}(q) \end{vmatrix} = 0 \\ e^{i\theta_j} \psi(x - \frac{L}{2}\vec{e}_j) = \psi(x + \frac{L}{2}\vec{e}_j) & M_{ab}^{\vec{\theta}}(q) : \text{ combination of generalized} \\ \vec{\theta} = (\theta_x, \theta_y, \theta_z) & \text{zeta functions, depends on } \vec{\theta}. \end{cases}$$

S and P wave contributions can be highly mixed with each other because trivial irrep $A_{1g}(A_g)$ is contained in both

decomposition.

$\vec{\theta}$	(0, 0, 0)	(0,0, heta)	(heta, heta,0)	(heta, heta, heta)	$(0,0,\pi)$	$(\pi,\pi,0)$	(π,π,π)
Symmetry	O_h	C_{4v}	C_{2v}	C_{3v}	D_{4v}	D_{2v}	D_{3v}
S	A_{1g}	A_1	A_1	A_1	A_{1g}	A_g	A_{1g}
Р	T_{1u}	$A_1\oplus E$	$A_1\oplus B_1\oplus B_2$	$A_1\oplus E$	$A_{2g}\oplus E_u$	$E_{1u}\oplus B_{2u}\oplus B_{3u}$	$A_{2u}\oplus E_u$

Simulation setup

- 2+1 flavor PACS-CS gauge configuration with $L^3 \times T = 32^3 \times 64$, La = 2.9 fm. Phys. Rev. D 79, 034503 (2009).
- Non perturbatively improved clover action
 for up and down quarks.

m_{π} [MeV]	N _{conf}
295	800
410	450

- Relativistic heavy quark (RHQ) action for charm and bottom quarks.
- We also calculate BB^* case for comparison.
- · Using operators $O_j = \frac{(\bar{u}\gamma_5 Q) \cdot (\bar{d}\gamma_j Q) - (\bar{d}\gamma_5 Q) \cdot (\bar{u}\gamma_j Q)}{\sqrt{2}} \quad (Q = c, b)$

Check of dispersion relations

Calculation according to the strategy

For DD^* system with $m_{\pi} = 410 \text{ MeV}$

Result of $k \cot \delta_0(k)$

S wave scattering phase shifts

For *DD**

For BB*

Scattering phase shifts get close to the behavior of a bound state as m_{π} gets smaller and heavy quark mass get heavier.

P wave scattering phase shifts

For DD*

For BB*

- P wave effects are measured and we separated.
- δ_1 seems to be independent of m_{π} for DD^* case while it depends on m_{π} for BB^* .

Summary

- S and P wave <u>scattering phase shift</u> are extracted through Lüscher's method under twisted BCs.
 - We properly separated the S and P wave effects in Lüscher's formula.
 - $QQ\bar{u}\bar{d}$ system seems to get close to **a bound state** as $m_{\pi} \rightarrow m_{\text{phys}}$ and heavy quark mass gets heavier.

Prospects

- More statistics for $m_{\pi} = 295$ MeV, and lighter m_{π} .
- A bound state in $QQ\bar{u}\bar{d}$ system?