Connecting Lattice QCD Nucleon-Pion Scattering to Nuclear Ab Initio Calculations

Aaron S. Meyer meyer54@llnl.gov

Kostas Kravvaris, Sungwoo Park, Sofia Quaglioni, Pavlos Vranas, Kyle Wendt

August 2, 2024

Lattice 2024

This work is supported in part by: Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250.

Outline

► Introduction

- ▶ Chiral Effective Field Theory and $N\pi$ Scattering
- ▶ Combined Fits with Lattice QCD
- Outlook/Conclusions

Nucleon-Pion Scattering

Nuclear Theory

Nuclear landscape is vast

Many short-lived nuclei with unknown properties

To describe full decay chains, need predictions of intermediate nuclei

Chiral Effective Field Theory

is powerful tool to characterize nuclei that are not directly accessible to experiments

Chiral Effective Field Theory

Nuclear properties from effective interactions between nucleons (N, solid) & pions $(\pi, \text{ dashed})$

Parameterized by Low Energy Constants (LECs) calibrated with fits to observables

 $c_1-c_4 \in$ LO LECs (fit at N3LO) for $N\pi$ scattering \implies contribute to N2LO NN effective interaction

Powerful tool for predicting nuclear properties

Uncertainty Quantification

LECs for χ EFT typically fixed by fits to scattering phase shifts

- \implies scattering phase shifts reported without uncertainties
- \implies scattering phase shifts well described, but nontrivial uncertainty propagation

Uncertainty Quantification

LECs for χ EFT typically fixed by fits to scattering phase shifts

- \implies scattering phase shifts reported without uncertainties
- \implies scattering phase shifts well described, but nontrivial uncertainty propagation
- \implies some derived quantities not well described (large uncertainties, not accurate)

Improvement limited by available data, no new $N\pi$ scattering experiments forthcoming:

How can we improve predictions?

 \implies Lattice Quantum Chromodynamics (LQCD)

Fit Workflow

Framework to fit $N\pi$ scattering cross section data [arXiv:1410.0646[nucl-th]] [Phys.Rev.X 6 (2016)] \implies Differential unpolarized, differential singly-polarized cross sections from Workington Institute Group data have [Phys. Rev. C 86 (2012)] (Nuclear 1247)

from Washington Institute Group database [Phys.Rev.C 86 (2012)] $(N_{\rm data}=1347)$

Fit Workflow

Framework to fit $N\pi$ scattering cross section data [arXiv:1410.0646[nucl-th]] [Phys.Rev.X 6 (2016)]

 \implies Differential unpolarized, differential singly-polarized cross sections from Washington Institute Group database [Phys.Rev.C 86 (2012)] ($N_{\text{data}} = 1347$)

Addition of LQCD spectra to improve $N\pi$ LECs constraints [Nucl.Phys.B 987 (2023)]

 \implies Isospin 3/2 $N\pi$ scattering phase shifts ($N_{LQCD} = 14$)

LQCD Combined Fit

LQCD Details

(0.1.1)

(1,1,1)

 $G_{2} = 2$

 F_1

 F_2

2

2

 $\frac{(3,1), (3,2), (5,2)^2}{(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)^3}$

 $(1,0), (1,1), (3,1), (3,2), (5,2)^2$

(3,1), (3,2), (5,2)

(3,1), (3,2), (5,2)

Fit Procedure

Fits using determinant residual method:

$$r_i = \det \left[\mathbbm{1} - B \tilde{K} \right]$$
 B : box matrix \tilde{K} : rescaled K matrix

$$K_{L'S'a';LSa}^{-1} = u_{a'}^{-L'-\frac{1}{2}} \tilde{K}_{L'S'a';LSa}^{-1} u_{a}^{-L-\frac{1}{2}} \qquad u_{a} = \frac{L|q_{\rm cm,a}|}{2\pi}$$

Use residuals to construct covariance:

$$\chi^2_{\rm LQCD} = \sum_{ij} r_i C_{ij}^{-1} r_j$$

 C_{ij} includes complete LQCD covariance, constructed from gradients using Gaussian error propagation K matrix truncated to $J \leq 3/2, 5/2;$ I=3/2 spectrum only

K matrix parameterized by $\chi {\rm EFT}$

NB: power series in $q_{\rm cm}$ – no possible way to reproduce Δ channel ($K \rightarrow \infty$ for finite $q_{\rm cm}$) Cut high $q_{\rm cm}$ LQCD data in $J^P = 3/2^+$ channel

Aaron S. Meyer

Combined Fit Covariance

w = 30each LQCD point counted 30 times in fit :

Some reduction of uncertainties (tension from LQCD?)

Drifting based on strength of LQCD weight \implies Included spectra still too high?

Aaron S. Meyer

Concluding Remarks

Outlook

Big to-do list:

- ▶ More LQCD spectra (add isospin 1/2, subthreshold expansion)
- Better LQCD spectra ($M_{\pi} \approx 200 \text{ MeV} \rightarrow 140 \text{ MeV}$)
- ► Add full χ PT dependence on M_{π} , F_{π}
- ▶ Combined χ PT with ERE?
- ▶ Refit NN LECs using updated $N\pi$ LECs
- Predictions with ab initio nuclear theory

Takeaway messages:

- ▶ $N\pi$ LECs are essential for quantifying interactions between nucleons
- ▶ Without modern experimental measurements, potential improvement of LEC constraints limited
- ▶ LQCD as complement to experimental data: use near threshold spectrum to better constrain LECs?

Thank you for your attention!

 χET at $O(Q^4)$

$$f_{\ell\pm}^{\pm}(s) = \frac{E+m}{16\pi\sqrt{s}} \int_{-1}^{+1} dz \left[g^{\pm} P_{\ell}(z) + \bar{q}^2 h^{\pm} \left(P_{\ell\pm1}(z) - z P_{\ell}(z) \right) \right]$$
$$\tan \delta_{\ell}^{\pm}(s) = |\vec{q}| \operatorname{Re} \left[f_{\ell\pm}^{\pm}(s) \right]$$

(B.1)

Contributions at order Q:

$$g^+=0\,,\qquad g^-=\frac{g_A^2\left(2M_\pi^2-t-2\,\omega^2\right)+2\,\omega^2}{4F_\pi^2\,\omega}\,,\qquad h^+=-\frac{g_A^2}{2F_\pi^2\,\omega}\,,\qquad h^-=0\,,$$

Contributions at order Q^2 :

$$g^+ = -\frac{4c_1M_\pi^2 - 2c_2\,\omega^2 - c_3\left(2\,M_\pi^2 - t\right)}{F_\pi^2}\,,\qquad g^- = 0\,,\qquad h^+ = 0\,,\qquad h^- = \frac{c_4}{F_\pi^2}\,, \tag{B.2}$$

Contributions at order Q^3 :

$$\begin{split} g^{+} &= \frac{i\sqrt{\omega^{2} - M_{\perp}^{2}}(g_{\lambda}^{+}(M_{\perp}^{2} - \omega^{2})(2M_{\perp}^{2} - t - 2\omega^{2}) + 3\omega^{*})}{g_{0}F_{\perp}^{2}\omega^{2}} - \frac{g_{\lambda}^{2}\tilde{K}_{0}(t(2M_{\perp}^{2} - \delta M_{\perp}^{2} + 2t^{2})}{Bt^{2}} &+ c_{\lambda}\left(\frac{g_{\lambda}^{2}M_{\perp}^{2}(M_{\perp}^{2} - -2\omega^{2})}{12F_{\perp}^{2}\omega} + \frac{g_{\lambda}^{2}\tilde{K}_{0}(t(2M_{\perp}^{2} - \delta M_{\perp}^{2} + 2t^{2})}{Bt^{2}} \\ g^{-} &= \frac{d_{\lambda}^{2}(M_{\perp}^{2}(M_{\perp}^{2} - -2\omega^{2}) + 3\omega^{*}(M_{\perp}^{2} - 2t))}{F_{2}^{2}} + \frac{g_{\lambda}^{2}M_{\lambda}^{2}(M_{\perp}^{2} - 2\omega^{2})}{F_{2}^{2}} + \frac{g_{\lambda}^{2}g_{\lambda}M_{\lambda}^{2}(M_{\perp}^{2} - 2\omega^{2})}{2W_{\perp}^{2}} + \frac{g_{\lambda}^{2}g_{\lambda}}(M_{\lambda}^{2} - 2\omega^{2})}{2W_{\perp}^{2}} + \frac{g_{\lambda}^{2}g_{\lambda}}(M_{\lambda}^{2} - 2\omega^{2})}{2W_{\perp}^{2}} + \frac{g_{\lambda}^{2}g_{\lambda}}(M_{\lambda}^{2} - 2\omega^{2})}{2W_{\perp}^{2}} + \frac{g_{\lambda}^{2}g_{\lambda}}(M_{\lambda}^{2} - 2\omega^{2})}{W_{\perp}^{2}} + \frac{g$$

$$\begin{split} \frac{\text{Contribution at order } Q_1^*}{\mathbf{F}_1^2} &= \frac{2\alpha_1 I_{20}(1)M_1^2(M_2^2-2t)}{F_1^2} + \alpha_2 \left(-\frac{\tilde{I}_{20}(t)\left(4M_1^2-9M_1^2t+2t^2\right)}{12F_1^2} - \frac{6M_1^4-13M_1^2t+2t^2}{288^2T_1^2} + \frac{\omega\left(-4M_2^2+t+4\omega^2\right)}{F_1^2} \right)}{F_1^2} \\ &= \frac{\alpha_1 \tilde{J}_{20}(t)\left(2M_1^4-6M_1^2t+2t^2\right)}{2F_1^2} + \frac{4\kappa_{11}\left(t-2M_2^2\right)^2}{F_1^2} + \frac{8\kappa_{11}\omega^2(2M_2^2-t)}{F_2^2} + \frac{16\kappa_{11}\omega^4}{F_2^2} \\ &+ \frac{4M_2^2\left(2\kappa_{10}-\epsilon_{22}-\epsilon_{26}+2M_2^2r+2t^2\right)}{R_1^2} + \frac{\kappa_{11}(t-2M_2^2)^2}{28F_1^2} + \frac{8\kappa_{11}\omega^2(2M_2^2-t)}{F_2^2} + \frac{8\kappa_{12}}{K_2^2} + \frac{8\kappa_{12}}{F_2^2} + \frac{8\kappa_{12}}{F_2^2} - \frac{\kappa_{12}}{K_2^2} + \frac{\kappa_{12}}{K_2^2} + \frac{\kappa_{12}}{K_2^2} - \frac{\kappa_{12}}{K_2^2} + \frac{\kappa_{12}}{K_2^2}$$

Aaron S. Meyer

(B.3)