Connecting Lattice QCD Nucleon-Pion Scattering to Nuclear Ab Initio Calculations

Aaron S. Meyer meyer54@llnl.gov

Kostas Kravvaris, Sungwoo Park, Sofia Quaglioni, Pavlos Vranas, Kyle Wendt

August 2, 2024

Lattice 2024

This work is supported in part by:

Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250. LLNL-PRES-867542

Outline

 \blacktriangleright Introduction

- \triangleright Chiral Effective Field Theory and $N\pi$ Scattering
- \blacktriangleright Combined Fits with Lattice QCD
- \triangleright Outlook/Conclusions

Nucleon-Pion Scattering

Nuclear Theory

Nuclear landscape is vast

Many short-lived nuclei with unknown properties

To describe full decay chains, need predictions of intermediate nuclei

Chiral Effective Field Theory

is powerful tool to characterize nuclei that are not directly accessible to experiments

Chiral Effective Field Theory

Nuclear properties from effective interactions between nucleons $(N, \text{ solid}) \& \text{ pions } (\pi, \text{ dashed})$

Parameterized by Low Energy Constants (LECs) calibrated with fits to observables

 c_1 – $c_4 \in$ LO LECs (fit at N3LO) for $N\pi$ scattering =⇒ contribute to N2LO *NN* effective interaction

Powerful tool for predicting nuclear properties

Uncertainty Quantification

LECs for χ EFT typically fixed by fits to scattering phase shifts

- \implies scattering phase shifts reported without uncertainties
- \implies scattering phase shifts well described, but nontrivial uncertainty propagation

Uncertainty Quantification

LECs for χ EFT typically fixed by fits to scattering phase shifts

- \implies scattering phase shifts reported without uncertainties
- \implies scattering phase shifts well described, but nontrivial uncertainty propagation
- some derived quantities not well described (large uncertainties, not accurate)

Improvement limited by available data, no new $N\pi$ scattering experiments forthcoming:

How can we improve predictions?

=⇒ Lattice Quantum Chromodynamics (LQCD)

Fit Workflow

Framework to fit $N\pi$ scattering cross section data [\[arXiv:1410.0646\[nucl-th\]\]](https://inspirehep.net/literature/1319797) [\[Phys.Rev.X 6 \(2016\)\]](https://inspirehep.net/literature/1375083)

=⇒ Differential unpolarized, differential singly-polarized cross sections from Washington Institute Group database [\[Phys.Rev.C 86 \(2012\)\]](https://inspirehep.net/literature/1108054) $(N_{\text{data}} = 1347)$

Fit Workflow

Framework to fit $N\pi$ scattering cross section data [\[arXiv:1410.0646\[nucl-th\]\]](https://inspirehep.net/literature/1319797) [\[Phys.Rev.X 6 \(2016\)\]](https://inspirehep.net/literature/1375083)

=⇒ Differential unpolarized, differential singly-polarized cross sections from Washington Institute Group database [Phys.Rev.C 86 (2012)] ($N_{\text{data}} = 1347$)

Addition of LQCD spectra to improve *Nπ* LECs constraints [\[Nucl.Phys.B 987 \(2023\)\]](https://inspirehep.net/literature/2133217)

 \implies Isospin 3/2 $N\pi$ scattering phase shifts ($N_{\text{LOCD}} = 14$)

LQCD Combined Fit

LQCD Details

 $\frac{G_2}{G_2}$ 2 (3,1), (3,2), (5,2)
 G 2 (1.0), (1.1), (3,1)² (3,2)² $(0,1,1)$ *G* 2 $(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)^3$ $(0,1,1)$ *G* 2 $(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)$
 $(1,1,1)$ *G* 2 $(1,0), (1,1), (3,1), (3,2), (5,2)^2$
 F_1 1 $(3,1), (3,2), (5,2)$ F_1 1 (3,1), (3,2), (5,2)
 F_2 1 (3,1), (3,2), (5,2)

 $(3,1), (3,2), (5,2)$

Fit Procedure

Fits using determinant residual method:

 $r_i = \det \left[1 - B\tilde{K} \right]$ *B* : box matrix \tilde{K} : rescaled *K* matrix

$$
K_{L'S'a';LSa}^{-1} = u_{a'}^{-L'-\frac{1}{2}} \tilde{K}_{L'S'a';LSa}^{-1} u_a^{-L-\frac{1}{2}} \qquad u_a = \frac{L|q_{\text{cm},a}|}{2\pi}
$$

Use residuals to construct covariance:

$$
\chi_{\text{LQCD}}^2 = \sum_{ij} r_i C_{ij}^{-1} r_j
$$

Cij includes complete LQCD covariance, constructed from gradients using Gaussian error propagation *K* matrix truncated to $J \leq 3/2, 5/2$; $I=3/2$ spectrum only

K matrix parameterized by *χ*EFT

NB: power series in q_{cm} – no possible way to reproduce Δ channel $(K \to \infty$ for finite q_{cm}) Cut high q_{cm} LQCD data in $J^P = 3/2^+$ channel

Combined Fit Covariance

 $w = 30$: each LQCD point counted 30 times in fit

Some reduction of uncertainties (tension from LQCD?)

Drifting based on strength of LQCD weight \implies Included spectra still too high?

Concluding Remarks

Outlook

Big to-do list:

- Interaction More LQCD spectra (add isospin 1/2, *subthreshold expansion*)
- \triangleright Better LQCD spectra ($M_π$ ≈ 200 MeV → 140 MeV)
- Add full *χ*PT dependence on M_π , F_π
- \triangleright Combined *χ*PT with ERE?
- **IF** Refit *NN* LECs using updated $N\pi$ LECs
- \blacktriangleright Predictions with ab initio nuclear theory

Takeaway messages:

- \triangleright *N* π LECs are essential for quantifying interactions between nucleons
- \triangleright Without modern experimental measurements, potential improvement of LEC constraints limited
- \triangleright LQCD as complement to experimental data: use near threshold spectrum to better constrain LECs?

Thank you for your attention!

 χ ET at $O(Q^4)$

$$
f_{\ell\pm}^{\pm}(s) = \frac{E+m}{16\pi\sqrt{s}} \int_{-1}^{+1} dz \left[g^{\pm} P_{\ell}(z) + \vec{q}^{2} h^{\pm} \left(P_{\ell\pm 1}(z) - z P_{\ell}(z) \right) \right]
$$

$$
\tan \delta_{\ell}^{\pm}(s) = |\vec{q}| \operatorname{Re} \left[f_{\ell\pm}^{\pm}(s) \right]
$$

 $(B.1)$

Contributions at order Q:

$$
g^+=0\,,\qquad g^-=\frac{g_A^2\left(2M_\pi^2-t-2\,\omega^2\right)+2\,\omega^2}{4F_\pi^2\,\omega}\,,\qquad h^+=-\frac{g_A^2}{2F_\pi^2\,\omega}\,,\qquad h^-=0\,,
$$

Contributions at order Q^2 :

$$
g^+=-\frac{4c_1M_\pi^2-2c_2\,\omega^2-c_3\left(2M_\pi^2-t\right)}{F_\pi^2}\,,\qquad g^-=0\,,\qquad h^+=0\,,\qquad h^-=\frac{c_4}{F_\pi^2}\,,\eqno({\rm B.2})
$$

Contributions at order Q^3

$$
\begin{array}{lcl} g^+ & = \frac{i\sqrt{\omega^2-M_1^2}\left(g_A^4\left(M_2^2-4\right)-2\omega^2\right)+3\,\omega^4\right)}{12\pi F_2^4\omega} -\frac{g_A^2M_2\left(2M_2^2-4\right)-2\omega^2}{4\pi F_2^4\omega^2} & +\frac{g_A^2M_2\left(M_2^2-4\right)-2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\left(M_2^2-4\right)-2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\left(M_2^2-4\right)-2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\left(M_2^2-4\right)-2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\left(M_2^2-4\right)-2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{4\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{4\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{4\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{4\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{12\pi F_2^4\omega} +\frac{g_A^2M_2\omega^2}{12\
$$

 $\label{h} h^- ~=~ \frac{i g_A^4 \left(\omega^2 - M_\pi^2\right)^{3/2}}{24 \pi F_\pi^4 \omega^2} + \frac{g_A^2 \bar{K}_0(t) \left(4 M_\pi^2 - t\right)}{8 F_\pi^4} - \frac{4 g_A^4 M_\pi^2 + 3 g_A^2 M_\pi \omega^2}{96 \pi F_\pi^4 \, \omega^2} + \frac{g_A^2 \left(2 M_\pi^2 - t - 2 \, \omega^2\right) + 2 \, \omega^2}{8 F_\pi^2 m \, \omega^2} \,,$ $(B.3)$

Continuous at order
$$
\begin{split} &\frac{\text{Continuous}}{F^4} = \frac{2c_1\tilde{I}_{20}(M_2^2-M_2^2)}{3F^2} + c_0\left(-\frac{\tilde{I}_{20}(0)\left(4M_2^4-9M_2^2t+2t^2\right)}{12F^4}\right. \\ &\left. \qquad \qquad \left. -\frac{6\tilde{I}_{20}(t)\left(M_2^2-M_2^2t+2t^2\right)}{2F^4} + \frac{6\tilde{I}_{12}(-3M_2^2t+2t^2)}{28\pi^2F^4}\right. \\ & \left. -\frac{c_2\tilde{I}_{20}(t)\left(2M_2^4-5M_2^2t+2t^2\right)}{2F^4} + \frac{4\tilde{a}_{11}(t-2M_2^2)}{4F^4} + \frac{6\tilde{I}_{12}(-2)}{F^4} + \frac{16\tilde{I}_{16}(t-4)}{F^4} + \frac{4M_2^2\left(2\tilde{I}_{12}+5M_2^2t+2t^2\right)}{2F^4} + \frac{4M_2^2\left(2\tilde{I}_{12}-\tilde{I}_{22}+2\tilde{I}_{23}F^4\right)\left(2M_2^2-1\right)}{2F^4} + \frac{16\tilde{I}_{16}(t-2M_2^2)}{F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2+1)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2+1)}{2F^4} + \frac{8\tilde{I}_{16}(t-2M_2^2+1)}{2F^4} + \frac{6\tilde{I}_{16}(t-2M_2^2+1)}{2F^4} + \frac{6\tilde{I}_{16}(t-
$$