

Spectral analysis for $N\pi$ and $N\pi\pi$ states in both parity sectors using distillation with domain wall fermions

Andreas Hackl

Christoph Lehner

at Lattice 2024 - Liverpool

University of Regensburg Institute I - Theoretical Physics

Boston University

Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno <u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

Introduction

Physical Motivation

- fundamental understanding of nucleon spectrum is relevant for e.g. nucleonneutrino interactions
- $N \rightarrow N\pi, N\pi\pi, \Delta$ transitions are relevant for the resonance regime of nucleon-neutrino interactions
- Nπ state are contributing to excited state systematics for nucleon axial-vector/vector currents *L. Barca et.al., Phys.Rev.D* 107 (2023) 5

from D. Simons, N. Steinberg, et al. arXiv:2210.02455

Computational Motivation

- access to a large database of distillation data (created for the g-2 project of the RBC/UKQCD collaborations)
- the creation of distillation data is expensive
- once computed and stored: using distillation data is cheap
- domain-wall fermions offer better chiral properties

Ensemble – Overview

Ens-Id	$L^3 \times T \times L_s$	$m_{\pi}/{ m MeV}$	<i>m_K</i> /MeV	$a^{-1}/{ m GeV}$	$N_{ m conf}$	N _c	$m_{\pi}L$
4	$24^3 \times 48 \times 24$	274.8(2.5)	530.1(3.1)	1.7312(28)	94	60	3.8
D	$32^3 \times 64 \times 24$	274.8(2.5)	530.1(3.1)	1.7312(28)	60	60	5.1
9	$32^3 \times 64 \times 12$	278.9(4.9)	531.2(4.9)	2.3549(49)	60	60	3.8
L	$64^3 \times 128 \times 24$	278.9(4.9)	531.2(4.9)	2.3549(49)	20	60	7.6
1	$32^3 \times 64 \times 24$	208.1(1.1)	514.0(1.8)	1.7312(28)	34	60	3.8
3	$32^3 \times 64 \times 24$	211.3(2.3)	603.8(6.1)	1.7312(28)	34	60	3.8
С	$64^3 \times 128 \times 24$	139.32(30)	499.44(88)	1.7312(28)	25	120	5.2

physical point information from:

$\rightarrow m_K$
$\rightarrow a^{-1}$
$\rightarrow m_{\pi}$
→ volume

- all **2+1 DWF + Iwasaki ensembles** are generated by the RBC/UKQCD collaborations
- the lattice spacings are taken from 48I and 64I
- values of m_{π} and m_{K} are only measured for one of the pairs
- masses for ensemble C are taken from 48I

Distillation

Distillation for baryons requires the following building blocks:

Basis first N_d eigenvectors $V^n(x)$ of the 3-dim Laplace operator (smeared links) $L(\boldsymbol{x}, \boldsymbol{y}) = -\delta_{\boldsymbol{x}, \boldsymbol{y}} + \frac{1}{6a^2} \sum_i U_i(\boldsymbol{x}) \delta_{\boldsymbol{x}, \boldsymbol{y}-a\hat{\boldsymbol{i}}} + U_i^{\dagger}(\boldsymbol{x}-a\hat{\boldsymbol{i}}) \delta_{\boldsymbol{x}, \boldsymbol{y}+a\hat{\boldsymbol{i}}}$

Modified Elementals $\mathcal{E}^{\ell n m}(t_x, p) = \sum_{x} \varepsilon_{abc} V_a^{\ell}(x, t) V_b^n(x, t) V_c^m(x, t) e^{-ip \cdot x}$

C. Egerer et al. Physical Review D 99, 034506 (2019) C. Lang et al., Physical Review D 87, 054502 (2013)

Perambulators

$$\mathcal{G}^{mn}(t_y, t_x) = \sum_{\boldsymbol{y}} V^m(t_y, \boldsymbol{y})^{\dagger} G^n(t_y, t_x, \boldsymbol{y})$$

where $G^n(t_y, t_x, y)$ denotes the propagator with source $V^n(x)$

Momentum insertion $\mathcal{P}_{cc'}^{nm}(t, \boldsymbol{p}) = \sum_{\boldsymbol{x}} \left[V_c^m(\boldsymbol{x}, t) \right]^{\dagger} e^{i \boldsymbol{p} \cdot \boldsymbol{x}} V_{c'}^m(\boldsymbol{x}, t)$

Distillation

Remarks

- Profile Ψ is a measure for the **smearing** due to the distillation operator
- narrow profile \rightarrow larger overlap with high mode states and more statistics
- λ_N and λ_N^{\star} denote the approx. Compton wavelengths of the Nucleon, N(1535) and N(1650)

Automatic Wick-Contractor

- $p \pi^+ \pi^- \rightarrow p \pi^+ \pi^-$ has 144 diagrams \rightarrow need for automation of contractions
- general process: $N + \sum_{i} \pi_{i} \rightarrow N + \sum_{j} \pi_{j}$ has the following properties:
 - ✓ there are three (sequential) propagator connecting the baryonic fermions
 - \checkmark the remaining fermions are part of a loop over pions

Automatic Wick-Contractor

- 1. anticommute fermionic fields to a predefined order
- 2. contract all fermions using Wick's theorem
- 3. find all (sequential) propagators and loops
- 4. contract with the corresponding Γ structures
- 5. translate everything into the usage of distillation objects

- everything can be boiled down to tensor contractions with perambulators, momentum insertions and modified elementals
- for most ensembles: calculations can be done on single nodes

Operator set and GEVP

- use of the Generalized Eigenvalue Problem (GEVP)
- operator set of the positive parity channel

 - $\diamond \ \mathcal{O}_{N\pi}(t) = \mathcal{O}_N^+(t, \boldsymbol{p})\mathcal{O}_{\pi}(t, -\boldsymbol{p}) \mathcal{O}_N^+(t, -\boldsymbol{p})\mathcal{O}_{\pi}(t, \boldsymbol{p})$ with implicit G_1^+ projection
- operator set of the negative parity channel
 - $\, \bigstar \ \, \mathcal{O}_N^-(t,\mathbf{0})$
 - $\diamond \ \mathcal{O}_{N\pi^S}(t) = \gamma^5 \mathcal{O}_N^+(t, \mathbf{0}) \mathcal{O}_\pi(t, \mathbf{0})$
 - $\diamond \ \mathcal{O}_{N\pi^{P}}(t) = \mathcal{O}_{N}^{+}(t, \boldsymbol{p})\mathcal{O}_{\pi}(t, -\boldsymbol{p}) + \mathcal{O}_{N}^{+}(t, -\boldsymbol{p})\mathcal{O}_{\pi}(t, \boldsymbol{p})$ with implicit G_{1}^{-} projection
- we project to the isospin $(I, I_3) = \left(\frac{1}{2}, \frac{1}{2}\right)$
- nucleon: $\mathcal{O}_N^{\pm}(t, \mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \varepsilon^{abc} P^{\pm} \psi^a(x) \left[u^b(x)^T C \gamma^5 d^c(x) \right]$ with ψ chosen to represent n or p
- pion: $\mathcal{O}_{\pi}(t, \mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \psi(x)\gamma^5 \phi(x)$ with ψ and ϕ chosen to represent π^+, π^0 , or π^-

Positive Parity Sector: Example Results (Ensemble L)

- effective energy of mode 1 and 2 converge to energies of non-interacting $N\pi$ and $N\pi\pi$ states
- dominant states align with the energy
- there is only a marginal difference between mode 0 and nucleon 2-point function
- $N\pi$ and $N\pi\pi$ have no significant overlap with nucleon 2-point function

(as expected from χ PT O. Bär, Phys.Rev.D 92 (2015) 7, 074504; Phys.Rev.D 97 (2018) 9, 094507)

Positive Parity Sector: Example Results (Ensemble L)

- consider difference between GEVP0 and Nucleon 2-point function $a\Delta m_{\rm eff}(t) = a \left(m_{\rm eff}^{\rm GEVP0}(t) - m_{\rm eff}^{2pt}(t) \right)$
- GEVP0 has no $N\pi$ and $N\pi\pi$ contributions
- Difference shows the contributions in Nucleon 2-point function
- for Ensemble L we get that $a\Delta m_{\rm eff}(t)\approx a_0 e^{-(E_{N\pi\pi}-M_N)t}$
- in agreement with eigenvectors of GEVP

Finite Volume Correction

finite volume correction using
$$B_{\chi}PT$$
:
 $m_N(L) - m_N(\infty) = \Delta_a(L) + \Delta_b(L)$
with
 $\Delta_a(L) = \frac{3g_A^2 m_0 m_\pi^2}{16\pi^2 f_\pi^2} \int_0^\infty dx \sum_{n \neq 0} K_0 \left(L|n| \sqrt{m_0^2 x^2 + m_\pi (1-x)} \right)$
and
 $\Delta_b(L) = \frac{3m_\pi^4}{4\pi^2 f_\pi^2} \sum_{n \neq 0} \left[(2c_1 - c_3) \frac{K_1(L|n|m_\pi)}{L|n|m_\pi} + c_2 \frac{K_2(L|n|m_\pi)}{(L|n|m_\pi)^2} \right]$

0.95

values for B_XPT constants are taken from
 G.S. Bali et al. Nuclear Physics B 866, 1 (2013)

Continuum Extrapolation

- a^2 term (Domain-Wall fermions)
- linear pion models inspired by
- A. Walker-Loud, PoS LATTICE2008:005 (2008)
- quadratic pion models inspired by $B_{\chi}PT$
- for averaging we use **Akaike information**

criterion AIC = $2k + \chi^2$

k = Number of fit parameter

Models used:

Tag	Model function $\mathcal{M}(a, m_{\pi}, m_K)$
$\pi(1)K(0)$	$M_N + c_0 a^2 + c_1 (m_\pi - m_\pi^0)$
$\pi(1)K(1)$	$M_N + c_0 a^2 + c_1 (m_\pi - m_\pi^0) + c_2 (m_K - m_K^0)$
$\pi(1)K(2)$	$M_N + c_0 a^2 + c_1 (m_\pi - m_\pi^0) + c_2 (m_K^2 - (m_K^0)^2)$
$\pi(2)K(0)$	$M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2)$
$\pi(2)K(1)$	$M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2) + c_2 (m_K - m_K^0)$
$\pi(2)K(2)$	$M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2) + c_2 (m_K^2 - (m_K^0)^2)$
$\pi(2,3)K(0)$	$M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2) + c_2 (m_\pi^3 - (m_\pi^0)^3)$
$\pi(2,3)K(1)$	$M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2) + c_2 (m_K - m_K^0) + c_3 (m_\pi^3 - (m_\pi^0)^3)$
$\pi(2,3)K(2)$	$\left M_N + c_0 a^2 + c_1 (m_\pi^2 - (m_\pi^0)^2) + c_2 (m_K^2 - (m_K^0)^2) + c_3 (m_\pi^3 - (m_\pi^0)^3) \right $

Model averaging for parameter β

$$\bar{\beta} = \sum_{\mathcal{M}} P(\mathcal{M}) \beta_{\mathcal{M}}$$

with model probabilities

$$P(\mathcal{M}) = \exp(-\mathrm{AIC}_{\mathcal{M}}) / \sum_{\mathcal{M}'} \exp(-\mathrm{AIC}_{\mathcal{M}'})$$

Continuum Extrapolation – Example Model

1.15 $\mathcal{M}(a,m_{\pi}^{0},m_{K}^{0})$ $--- \mathcal{M}(0, m_{\pi}^0, m_K)$ $\longrightarrow \mathcal{M}(0, m_{\pi}, m_{K}^{0})$ H data H data Η data 1.10 data $(m_\pi o m_\pi^0, m_K o m_K^0$) I₩I ιŦι I₩ data ($a
ightarrow 0, m_K
ightarrow m_K^0$) data ($a
ightarrow 0, m_{\pi}
ightarrow m_{\pi}^0$) ŧ. 1.05 $\begin{bmatrix} \text{GeV} \\ \text{M}^N \end{bmatrix} 1.00$. 0.95H 0.900.850.20 0.510.002 0.0040.0060.0080.0100.0120.0140.150.250.300.500.520.530.540.000 a^2 [fm²] m_{π} [GeV] $m_K \; [{\rm GeV}]$

Model: $\mathcal{M}(a, m_{\pi}, m_K) = M_N + c_1 a^2 + c_2 (m_{\pi} - m_{\pi}^0) + c_3 (m_K^2 - (m_K^0)^2)$, Tag: $[\pi(1)K(2)]$

Fit results:

Тад	M_N /GeV	c_1/GeV^3	<i>c</i> ₂	$c_3 \cdot \text{GeV}$	χ^2/dof	p-value
π(1)K(2)	0.923(22)	0.072(52)	0.991(84)	0.017(98)	0.85/3	0.84

Continuum Extrapolation

Summary:

- no Kaon dependency
- linear and quadratic pion model fit the data
- m_{π}^3 term not necessary to fit the data

final **nucleon mass estimate**:

 $M_N = 0.927(21)(05) \text{ GeV}$

without Isospin-breaking and QED corrections

Negative Parity – Example Result (Ensemble 9)

- disentanglement of the individual states in the GEVP
- inclusion of the negative nucleon 2-point function requires more statistics and narrower profile (Ensemble 9 and 4 yield the best result)
- $N\pi$ states have better signal-to-noise behavior
- mass estimates from GEVP mode 1 and nucleon 2-point function are in agreement with N(1535) and N(1650)

Summary and Outlook

Summary

- case study of the effectiveness of distillation for nucleon spectroscopy for (near to) physical pion masses and domain wall fermions
- positive parity channel: reproduction of the χ PT result of the negligibility of $N\pi$ and $N\pi\pi$ contributions in the nucleon 2-point function
- negative parity channel: GEVP works, but we need more statistics for more sophisticated analysis
- automated contraction for general nucleon-pion processes in the distillation framework
- continuum extrapolation of the nucleon mass

Outlook

- Repeat the same analysis for other nucleon quantities (e.g. axial-vector current)
- Increase the statistics and number of distillation modes for the negative parity channel
- Include higher momenta in our analysis
- Repeat the analysis for Δ baryons

Backup Slides

Overview GEVP in the positive parity sector

Overview GEVP in the positive parity sector

Overview GEVP in the positive parity sector

20

Overview GEVP in the negative parity sector

Overview GEVP in the negative parity sector

