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Motivation

FLAG1 reports averages for observables calculable from
K → ℓν, π → ℓν at a sub-percent level.

Nf = 2 + 1 fπ± = 130.2(0.8) MeV (0.61%)
Nf = 2 + 1 + 1 fK± = 155.7(0.3) MeV (0.19%)
Nf = 2 + 1 fK± = 155.7(0.7) MeV (0.45%)

These inform |Vus |/|Vud |.
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Lattice results based on
partial evaluation of
first-order isospin-breaking
corrections (or χPT).

< 1% errors without a full
ab-initio correction?

Plot from FLAG Review 2021 (February 2024
Revision). Full citation list at end of talk.

1
FLAG Review 2021 (February 2024 Revision), http://flag.unibe.ch/2021/
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Motivation

Similar situation for D → ℓν, Ds → ℓν.

Nf = 2 + 1 + 1 fD = 212.0(0.7) MeV (0.33%)
Nf = 2 + 1 fD = 209.0(2.4) MeV (1.15%)
Nf = 2 + 1 + 1 fDs = 249.9(0.5) MeV (0.2%)
Nf = 2 + 1 fDs = 248.0(1.6) MeV (0.65%)
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Important to include a
complete ab-initio
calculation of first-order
isospin-breaking
corrections.

Plot from FLAG Review 2021 (February 2024
Revision). Full citation list at end of talk.
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Previous Work

Several published results addressing disconnected QED IB:

Electromagnetic Splittings and Light Quark Masses in Lattice
QCD
Duncan et al. 1996 Phys. Rev. Lett. 76, 3894

Computing electromagnetic effects in fully unquenched QCD
Duncan et al. 2005 Phys. Rev. D 71, 094509

Full QED+QCD Low-Energy Constants through Reweighting
Ishikawa et al. 2012 Phys. Rev. Lett. 109, 072002

1+1+1 flavor QCD+QED simulation at the physical point
Aoki et al. 2012 Phys. Rev. D 86, 034507

Isospin splittings of meson and baryon masses from
three-flavor lattice QCD + QED
Horsley et al. 2016 J. Phys. G: Nucl. Part. Phys. 43 10LT02
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https://doi.org/10.1103/PhysRevLett.76.3894
https://doi.org/10.1103/PhysRevD.71.094509
https://doi.org/10.1103/PhysRevLett.109.072002
https://doi.org/10.1103/PhysRevD.86.034507
https://doi.org/10.1088/0954-3899/43/10/10LT02


Previous Work

Quark-disconnected O(α) diagrams have also been calculated for
gµ − 2 HVP:

Leading hadronic contribution to the muon magnetic moment
from lattice QCD
Borsanyi et al. 2021 Nature 593, 51–55

High precision calculation of the hadronic vacuum polarisation
contribution to the muon anomaly
Boccaletti et al. 2024 [arXiv:2407.10913]
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https://doi.org/10.1038/s41586-021-03418-1 
https://doi.org/10.1038/s41586-021-03418-1 
https://doi.org/10.1038/s41586-021-03418-1 
 https://doi.org/10.48550/arXiv.2407.10913 
 https://doi.org/10.48550/arXiv.2407.10913 
 https://doi.org/10.48550/arXiv.2407.10913 


Lattice Strategy: RM123 method

Working at O(α): mu=md .

Introduce IB effects using the RM123 method1 2:

IB corrections via perturbative expansion in α = e2

4π , m.

⟨O⟩ = ⟨O⟩
∣∣∣∣
e=0

+
1

2

(
eϕ
)2 [ ∂

∂e

∂

∂e
⟨O⟩

]
e=0︸ ︷︷ ︸

QED IB

+ (mϕ −m(0))

[
∂

∂m
⟨O⟩

]
e=0︸ ︷︷ ︸

Strong IB

+... (1)

IB corrections take the form of additional diagrams evaluated
in the isospin-symmetric limit.
mϕ = physical mass, m(0) = simulation-point mass.

1
de Divitiis et al. JHEP 04 (2012) 124 [arXiv:1110.6294]

2
de Divitiis et al. PRD 87 (2013) 114505 [arXiv:1303.4896]
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https://doi.org/10.1007/JHEP04%282012%29124
https://arxiv.org/abs/1110.6294
https://doi.org/10.1103/PhysRevD.87.114505
https://arxiv.org/abs/1303.4896


Lattice Strategy: Isospin-Breaking Corrections to P → ℓν
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Diagrams from Boyle et al. JHEP 02 (2023) 242. Red diamonds: scalar insertions.

Quark-connected contributions (left) to the isospin-breaking
correction have been calculated for P → ℓν in lattice QCD1 2.

Quark-disconnected contributions (right) omitted.

Referred to as the “electro-quenched” approximation.

Uncontrolled systematic.

1
Di Carlo et al. PRD 100 (2019) 034514 [arXiv:1904.08731]

2
Boyle et al. JHEP 02 (2023) 242 [arXiv:2211.12865]
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https://doi.org/10.1007/JHEP02(2023)242
https://doi.org/10.1103/PhysRevD.100.034514
https://arxiv.org/abs/1904.08731
https://doi.org/10.1007/JHEP02(2023)242
https://arxiv.org/abs/2211.12865


Lattice Strategy: Propagator Loops in Lattice QCD

Quark-disconnected diagrams are difficult to estimate—loops
given by factors like D−1(x , x).

This requires one propagator solve per lattice site.
→ Computationally infeasible.

Instead stochastically estimate Dirac operator inverse using
noise vectors η obeying〈

η(y)η†(x)
〉
η
= δxy , |η(x)|2 = 1, ⟨η(x)⟩η = 0, (2)

where ⟨·⟩η is an average over η. This gives

D−1(x , x) =
∑
y

D−1(x , y)δxy (3)

≈ 1

Nη

∑
η

(∑
y

D−1(x , y)η(y)

)
η†(x). (4)
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Lattice Strategy: EM Currents in the Isospin Limit

O(α) correlation function for operator O:∑
x

∑
y

⟨Jµ(x)Aµ(x)Jν(y)Aν(y)O⟩ (5)

EM current insertions: Jµ(x) =
∑

f Qf ψf (x)γµψf (x).

2 + 1f : Consider sum over quark flavours f ∈ {u, d , s}.
Qf : EM charge (i.e. Qu = 2/3, Qd = −1/3, Qs = −1/3).

u and d terms sum in single-propagator loops.

Light and strange quarks equally-weighted; relative minus sign.

⇒ Jµ(x) = 1/3
(
ψl(x)γµψl(x)− ψs(x)γµψs(x)

)
Aµ.

This leads to differences of single-propagator traces in several
disconnected diagrams.
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Lattice Strategy: Split-Even Estimator

Giusti et al.1 have demonstrated a successful variance-reduction
strategy for differences of single-propagator loops:
“split-even” estimators.

For e.g. Wilson, DWF Dirac Operators differing only by mass,

D−1
1 − D−1

2 = D−1
1 (D2 − D1)D

−1
2 , (6)

= (m2 −m1)D
−1
1 D−1

2 . (7)

Choice in how to stochastically estimate propagator traces:

“Standard” (m2 −m1)Tr
{
γµ
{
D−1
1 D−1

2 η
}
(x)η†(x)

}
, (8)

“Split-Even” (m2 −m1)Tr
{
γµ
{
D−1
1 η

}
(x){η†D−1

2 }(x)
}
, (9)

→ c.f. Raoul Hodgson 11:35 2nd August – Use in rare K decays
1
Giusti et al. EPJC 79, 586 (2019) [arXiv:1903.10447]
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https://doi.org/10.1140/epjc/s10052-019-7049-0
https://arxiv.org/abs/1903.10447


Lattice Strategy: Ensemble Parameters

Current run performed on the RBC-UKQCD ‘C0’ ensemble.

2 + 1 flavour, L3 × T = 483 × 96, a−1 = 1.73 GeV.

Physical-scale light-, strange-quark masses.

zMöbius Domain-Wall action.
→ Cheaper than Möbius DWF; requires bias correction step.
→ Accumulate statistics on cheaper zMöbius estimator.

Light quarks deflated with 2000 low modes.

Following techniques developed on non-physical mass ‘C1’
ensemble for quark-disconnected diagrams (Harris et al.1)

Runs also planned on the ‘M0’ ensemble.

2+1 flavour, L3 × T = 643 × 128, a−1 = 2.36 GeV.

Same physical volume as C0.

Also at physical-scale light-, strange-quark masses.

1
Harris et al. PoS LATTICE2022 (2023) 013 [arXiv:2301.03995]
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https://doi.org/10.22323/1.430.0013
https://arxiv.org/abs/2301.03995


Lattice Strategy: Photon Action

Finite volume + periodic boundary conditions:
→ Charged states forbidden by Gauss’ Law.

Need to choose a QED prescription.

QEDL: Remove spatial zero-mode1.
→ Can express as a special case of QEDIR

L
2

→ Large finite-volume effects at O(1/L3) for K → ℓν?3

QEDr : Redistribute zero-mode to neighbouring modes4 5.
→ Investigated to remove O(1/L3) finite-volume effects
→ Also a particular case of QEDIR

L

→ Used for this project.

1
Hayakawa and Uno, PTP 120 (2008) 413 [arXiv:0804.2044]

2
Davoudi et al. PRD 99 (2019) 034510 [arXiv:1810.05923]

3
Boyle et al. JHEP02(2023)242 arXiv: [2211.12865]

4
Di Carlo, PoS LATTICE2023 (2024) 120 [arXiv:2401.07666]

5
Hermansson-Truedsson et al., PoS LATTICE2023 (2024) 265 [arXiv:2310.13358]
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https://doi.org/10.1143/PTP.120.413
https://arxiv.org/abs/0804.2044
https://doi.org/10.1103/PhysRevD.99.034510
https://arxiv.org/abs/1810.05923
https://doi.org/10.1007/JHEP02%282023%29242
https://arxiv.org/abs/2211.12865
https://doi.org/10.22323/1.453.0120
https://arxiv.org/abs/2401.07666
https://doi.org/10.22323/1.453.0265
https://arxiv.org/abs/2310.13358


Lattice Strategy: Software

Calculation performed with Grid1, and the Grid-based
workflow management software Hadrons2.

Split-even and quark-disconnected diagram contractions
implemented as Hadrons modules (code review TBC).

Thanks to Antonin Portelli, Raoul Hodgson, and Tim Harris
for assisting with code development.

1
https://github.com/paboyle/Grid

2
https://github.com/aportelli/Hadrons
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O(α) Quark-Disconnected Diagrams for P → P
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[Schematics courtesy of Matteo Di Carlo.]
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Specs error analysis

Specs subdiagram contains
two l − s loops.

Can be computed as a
difference of propagators or
with the split-even
estimator.
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Specs: l - s

Difference
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Left: error scaling of specs
subdiagram.

Significant reduction in
error with the split-even
estimator.

Reaching the gauge noise
with ∼32 Z2 noise hits.
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Tadpole error analysis
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K tadpole insertions, t=12
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Tadpole diagrams also
feature an l − s loop.

Left: Relative error of the
kaon tadpole diagrams.

Once again, the split-even
estimator significantly
reduces the error.

15 / 18 Ryan Hill Near-physical QCD+QED beyond electro-quenched



Burger error analysis

‘Burger’ diagram → same
flavour in both propagators.

e2q → no relative
cancellation between
diagrams.

q1

q2

‘Burger’ diagram falls off exponentially with propagator
separation ⇒ short-distance dominated.

Prior study on non-physical mass ‘C1’ ensemble (Harris et
al.1): concentrate computational effort on short-distance
behaviour.

Volume-averaged stochastic estimation of all-to-all propagators
within a radius |x − y | < R.
Random point sources for |x − y | >= R.

1
Harris et al. PoS LATTICE2022 (2023) 013 [arXiv:2301.03995]
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Burger error analysis

Right: Error scaling of the
strange burger subdiagram
(R=4).

Volume-averaging strategy
provides an efficient method
for obtaining a small error.

Not yet at gauge noise with
64 hits. 101
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Summary

Quark-disconnected QED IB corrections are challenging, but
important to quantify.

Diagrams at O(α) have exploitable characteristics:

Precision of ‘Specs’ and Tadpole diagrams can be greatly
improved with the split-even estimator.
‘Burger’ diagram is short-distance dominated.

Findings at non-physical masses reproduced on a
physical-point ensemble.

Building towards a physical-point electro-unquenched
calculation of P → ℓν.
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Backup
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