Finite-volume formalism for physical processes with an electroweak loop integral

Xin-Yu Tuo, Xu Feng

Based on arxiv:2407.16930

Lattice 2024, Liverpool, UK

2/8/2024

Processes with an electroweak loop integral

 \triangleright In QED corrections and rare decays, electroweak propagators and hadronic matrix elements often form a loop integral structure

(g) Radiative decay: $K^+ \rightarrow \ell^+ \nu_\ell \gamma^* \rightarrow \ell^+ \nu_\ell \ell^{\prime +} \ell^{\prime -}$

Processes with an electroweak loop integral

 \triangleright In QED corrections and rare decays, electroweak propagators and hadronic matrix elements often form a loop integral structure

Idea of EW_{∞} (QED_{∞})

 \triangleright Examples using $EW_{\infty}(QED_{\infty})$:

arxiv:1705.01067

arxiv:1812.09817

arxiv:2208.03834

Idea of EW_{∞} (QED_{∞})

 \triangleright Examples using $EW_{\infty}(QED_{\infty})$:

 \triangleright This work develops the finite-volume formalism of EW_{∞} method if the hadronic intermediate states are one particle or two particles.

How to analyze finite-volume effects?

 \triangleright FV effects depend on smoothness of the summand

$$
\frac{1}{L^3}\sum_{\boldsymbol{k}}\tilde{f}(\boldsymbol{k})
$$

singular: $O(1/L)$ FV effects

continuously differentiable up to order N: $O(1/L^{N+1})$ FV effects analytic*:* $O(e^{-mL})$ FV effects $\tilde{f}(\mathbf{k})$

How to analyze finite-volume effects?

 \triangleright FV effects depend on smoothness of the summand

$$
\frac{1}{L^3}\sum_{\boldsymbol{k}}\tilde{f}(\boldsymbol{k})
$$

singular: $O(1/L)$ FV effects

- continuously differentiable up to order N: $O(1/L^{N+1})$ FV effects analytic*:* $O(e^{-mL})$ FV effects $\tilde{f}(\mathbf{k})$
- \triangleright What if we do the integral in coordinate space? A simple model:

momentum-space analysis Integral any two functions with \$ idea

How to analyze finite-volume effects?

 \triangleright FV effects depend on smoothness of the summand

$$
\frac{1}{L^3}\sum_{\bm{k}}\tilde{f}(\bm{k})
$$

singular: $O(1/L)$ FV effects

- continuously differentiable up to order N: $O(1/L^{N+1})$ FV effects analytic*:* $O(e^{-mL})$ FV effects $\tilde{f}(\mathbf{k})$
- \triangleright What if we do the integral in coordinate space? A simple model:

$$
\int_{V} d^{3}x A^{\infty}(x) B^{(L)}(x)
$$
\n
$$
A^{\infty}(x) = \int \frac{d^{3}k}{(2\pi)^{3}} \tilde{A}(k) e^{-ik \cdot x} \longrightarrow \frac{1}{L^{3}} \sum_{k'} \underbrace{\int \frac{d^{3}k}{(2\pi)^{3}} \delta_{L}(k'-k) \tilde{A}(k) \tilde{B}(k')}_{\delta_{L}(q) = \int_{V} d^{3}x e^{iq \cdot x}}_{\delta_{L}(q) = \int_{V} d^{3}x e^{iq \cdot x}} \qquad (A)
$$
\n
$$
\text{Integral any two functions}
$$
\nwith EW_{∞} idea\n
$$
\text{integral any two functions}
$$
\n
$$
= \text{integals}
$$
\n

 \triangleright We prove: FV effects still depend on the smoothness of the summand.

 \triangleright The momentum-space analysis still works!

\triangleright Physical case

$$
I^{\infty} = \int \frac{d^4k}{(2\pi)^4} L^{\infty}(k) H^{\infty}(k, p),
$$

$$
H^{\infty}(k, p) = \int d^3x \int_{-\infty}^{\infty} dt e^{ik \cdot x} \langle f | T [J_1(t, x) J_2(0)] | i \rangle
$$

 \triangleright EW_{∞} method ($t < 0$ time ordering) $I^{(LT)}=c_{ME}\int_V d^3x \int_{-t_c}^0 d\tau L_E^\infty(\tau,\bm{x}) H^{(L)}_E(\tau,\bm{x})$

 \triangleright Physical case

$$
I^{\infty} = \int \frac{d^4k}{(2\pi)^4} L^{\infty}(k) H^{\infty}(k, p),
$$

$$
H^{\infty}(k, p) = \int d^3x \int_{-\infty}^{\infty} dt e^{ik \cdot x} \langle f | T [J_1(t, x) J_2(0)] | i \rangle
$$

 $I^{(LT)}$

 \triangleright EW_{∞} method ($t < 0$ time ordering) $I^{(LT)}=c_{ME}\int_V d^3x \int_{-t_s}^0 d\tau L_E^\infty(\tau,\bm{x}) H^{(L)}_E(\tau,\bm{x})$ $I^{(LT)} = \frac{1}{L^3} \sum_{k \in \mathbb{N}} \int \frac{d^3k}{(2\pi)^3} \delta_L(\mathbf{k}'-\mathbf{k}) \left[\int_C \frac{dk^0}{2\pi} L^\infty(k) \right] H^{(LT)}(k',p)$

 \triangleright There are also FV effects in momentum-space hadronic function

$$
H_{t<0}^{\infty}(k, p) = i \sum_{\alpha} \frac{A_{\alpha}^{\infty}(-k, E_{\alpha})}{m - k^{0} - E_{\alpha} + i\epsilon}
$$

$$
H^{(LT)}(k', p) = i \sum_{\alpha_{L}} \frac{A_{\alpha}^{(L)}(-k', E_{\alpha_{L}})}{m - k^{0} - E_{\alpha_{L}}}(1 - e^{(m - k^{0} - E_{\alpha_{L}})t_{s}})
$$

 \triangleright Two corrections

 \triangleright Two corrections

What we know

e.g., for two-particles intermediate states PRD 101 (2020) 1, 014509 arxiv:1911.04036

What's new

FV effects due to coordinate space integral in EW_{∞} method

> Analysis the singularity of the summand

One-particle case

Ø Example: QED self-energy

One-particle case

One-particle case

 0.001

0.000

 \overline{O}

 $I^{(LT)} - \Delta I_1$

60

40

 $T/2$

 20

Two-particle case

matrix element of vertex)

 \triangleright Similar as one-particle case, the summand is still IR finite

- \triangleright Similar as one-particle case, the summand is still IR finite
- \triangleright Cusp effects: $\hat{I}(\mathbf{k}')$ has nonsmooth points at threshold $|\mathbf{k}'| = \sqrt{(m_{\eta} - k^0)^2 - 4m_{\pi}^2},$ $\eta(p)$ and is differentiable up to order $N = l$ (angular momentum).

 \rightarrow $O(1/L^{l+1})$ FV effects. (P wave: $O(1/L^2)$)

 $\mu^+(p^+)$

 $\pi\pi \sqrt{\frac{\gamma(p-k)}{n}}$

Numerical test of ΔI_2

 \triangleright Numerical test of ΔI₂ in $\eta \to \mu^+ \mu^-$: one $\pi \pi$ loop (ignore rescattering effects), GS model

Conclusion

1. One-particle case: Why in IVR method $\delta_{IVR} \sim O(e^{-mL})$? This work develops the finite-volume formalism of EW_{∞} method in

2.Two-particle case:

Low-lying $\pi\pi$ state in P wave is suppressed due to rho resonance. En-Hung Chao, Norman Christ, (2024), arxiv:2406.07447