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Motivations and Challenges

▶ Scalar and pseudoscalar four-quark operators naturally incorporate
weak interaction effects.

▶ Relevant for calculating CKM matrix elements at high precision.

▶ Potential discoveries at the Large Hadron Collider (LHC), such as
new tetraquarks.

▶ Phenomenological bag parameters are other important lattice
quantities associated with four-quark operators.

Practical difficulties in calculating physical matrix elements of
four-quark operators:
• Unwanted mixing encountered under renormalization.
• In GIRS (GFs of gauge-invariant operators), the calculations at any
given order in perturbation theory require Feynman diagrams that have
more loops than Green’s functions (GFs) with external elementary
fields.
• When mixing occurs, the calculation of some three-point GIRS GFs
may be unavoidable, which are typically more noisy in simulations.
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Definitions

We investigate four-quark composite operators of the form:

OΓΓ̃(x) = ψ̄f1(x)Γψf3(x)ψ̄f2(x)Γ̃ψf4(x),

where Γ and Γ̃ denote products of Dirac matrices:

Γ, Γ̃ ∈ {11, γ5, γµ, γµγ5, σµν , γ5σµν} ≡ {S ,P,V ,A,T , T̃},

where σµν = 1
2 [γµ, γν ]; color and spinor indices are implied. In our study,

we focus on ∆F = 2 four-quark operators with Γ = Γ̃ and Γ = Γ̃γ5
(repeated Lorentz indices are summed over), which are scalar or
pseudoscalar quantities under rotational symmetry.
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Study of the mixing for four-quark operators

▶ Mixing among operators with different Dirac matrices is allowed, as
dictated by symmetries.

We construct operators with exchanged flavors of their quark fields,
which are related to the original operators through the Fierz–Pauli–Kofink
identity (the superscript letter F stands for Fierz):

OΓΓ̃ ≡ (ψ̄f1 Γψf3)(ψ̄f2 Γ̃ψf4) ≡
∑
x

∑
a,c

(
ψ̄a
f1(x) Γψ

a
f3(x)

)(
ψ̄c
f2(x) Γ̃ψ

c
f4(x)

)
,

OF
ΓΓ̃

≡ (ψ̄f1 Γψf4)(ψ̄f2 Γ̃ψf3) ≡
∑
x

∑
a,c

(
ψ̄a
f1(x) Γψ

a
f4(x)

)(
ψ̄c
f2(x) Γ̃ψ

c
f3(x)

)
,

where Dirac indices are implicit, and color indices are denoted by Latin
letters a, c .
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Exploitation of key Symmetries

We considered symmetries of the QCD action [1]:

Parity :

{
Pψf (x) = γ4 ψf (xP)

Pψ̄f (x) = ψ̄f (xP) γ4

Charge conjugation :

{
Cψf (x) = −C ψ̄T

f (x)

Cψ̄f (x) = ψT
f (x) C

Flavor exchange symmetry :
{
S≡(f3 ↔ f4)

Flavor Switching symmetry 1 :
{
S ′≡(f1 ↔ f3, f2 ↔ f4)

Flavor Switching symmetry 2 :
{
S ′′≡(f1 ↔ f4, f3 ↔ f2)

where xP = (−x, t), T means transpose and the matrix C satisfies:
(Cγµ)

T = Cγµ, C
T = −C and C †C = 1.

R. Frezzotti and G. C. Rossi, “Chirally improving Wilson fermions. II.
Four-quark operators,” JHEP 10 (2004), 070 [arXiv:hep-lat/0407002
[hep-lat]].

6 / 27



Transformation properties of the four-quark operators

P CS ′ CS ′′ CPS ′ CPS ′′

OVV + + + + +
OAA + + + + +
OPP + + + + +
OSS + + + + +
OTT + + + + +

O[VA+AV ] − − − + +
O[VA−AV ] − − + + −
O[SP−PS] − + − − +
O[SP+PS] − + + − −
OTT̃ − + + − −

Table 1: Transformations of the four-quark operators OΓΓ̃ under P, CS ′, CS ′′,
CPS ′ and CPS ′′ are noted. The operators OT̃T and OT̃ T̃ are not explicitly
shown in the above matrix, as they coincide with OTT̃ and OTT , respectively.
For the Fierz four-quark operators OF

ΓΓ̃
, we must exchange the columns

CS ′ → CS ′′ and CPS ′ → CPS ′′.
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Basis of operators and Green’s Functions

The new basis of operators can be further decomposed into smaller
independent bases according to symmetries P, S , CPS ′, CPS ′′.
Following the notation in the literature [1], the 20 operators of Table 1
(including the Fierz operators) are classified into 4 categories:

(a) Parity Conserving (P = +1) operators with S = +1: QS=+1
i ,

(i = 1, 2, . . . , 5),

(b) Parity Conserving (P = +1) operators with S = −1: QS=−1
i ,

(i = 1, 2, . . . , 5),

(c) Parity Violating (P = −1) operators with S = +1: QS=+1
i ,

(i = 1, 2, . . . , 5),

(d) Parity Violating (P = −1) operators with S = −1: QS=−1
i ,

(i = 1, 2, . . . , 5),

A. Donini, V. Gimenez, G. Martinelli, M. Talevi and A. Vladikas,
Eur. Phys. J. C 10 (1999), 121-142 doi:10.1007/s100529900097
[arXiv:hep-lat/9902030 [hep-lat]].
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Mixing of four-quark operators upon Renormalization

The renormalized Parity Conserving (Violating) operators, Q̂S=±1

(Q̂S=±1), are defined via the equations:

Q̂S=±1
l = ZS=±1

lm · QS=±1
m , Q̂S=±1

l = ZS=±1
lm · QS=±1

m ,

where l ,m = 1, . . . , 5 (a sum over m is implied).

Our focus is on the four-quark operators with ∆F = 2, which do not mix
with lower-dimensional operators, which have the same symmetry
properties.

OΓΓ̃(x) = ψ̄f1(x)Γψf3(x)ψ̄f2(x)Γ̃ψf4(x),

f1 /∈ {f3, f4}

and
f2 /∈ {f3, f4}
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Basis of operators and Green’s Functions

The four-quark operators mix among themselves and are grouped as
shown in the curly brackets.

Parity even:

QS=±1
1 ≡ 1

2

[
OVV ±OF

VV

]
+ 1

2

[
OAA ±OF

AA

]
QS=±1

2 ≡ 1
2

[
OVV ±OF

VV

]
− 1

2

[
OAA ±OF

AA

]
QS=±1

3 ≡ 1
2

[
OSS ±OF

SS

]
− 1

2

[
OPP ±OF

PP

]
QS=±1

4 ≡ 1
2

[
OSS ±OF

SS

]
+ 1

2

[
OPP ±OF

PP

]
QS=±1

5 ≡ 1
2

[
OTT ±OF

TT

]
Parity odd: {

QS=±1
1 ≡ 1

2

[
OVA ±OF

VA

]
+ 1

2

[
OAV ±OF

AV

]
{
QS=±1

2 ≡ 1
2

[
OVA ±OF

VA

]
− 1

2

[
OAV ±OF

AV

]
QS=±1

3 ≡ 1
2

[
OPS ±OF

PS

]
− 1

2

[
OSP ±OF

SP

]{
QS=±1

4 ≡ 1
2

[
OPS ±OF

PS

]
+ 1

2

[
OSP ±OF

SP

]
QS=±1

5 ≡ 1
2

[
OTT̃ ±OF

TT̃

]
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Mixing Matrices

Therefore, the mixing matrices ZS=±1 (ZS=±1), which renormalize the
Parity Conserving (Violating) operators, take the following form:

ZS=±1 =


Z11 Z12 Z13 Z14 Z15

Z21 Z22 Z23 Z24 Z25

Z31 Z32 Z33 Z34 Z35

Z41 Z42 Z43 Z44 Z45

Z51 Z52 Z53 Z54 Z55


S=±1

,

ZS=±1 =


Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55


S=±1

.
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Importance of the Conversion Matrices

In order to arrive at the renormalized four-quark operators in the more
standard MS scheme (experimental data), the conversion matrices

(CS=±1)MS,GIRS and (C̃S=±1)MS,GIRS between GIRS and MS schemes
are necessary:

(ZS=±1)MS = (CS=±1)MS,GIRS(ZS=±1)GIRS,

(ZS=±1)MS = (C̃S=±1)MS,GIRS(ZS=±1)GIRS.

These conversion matrices can be computed only perturbatively due to
the very nature of MS. Being regularization-independent, they are
evaluated more easily in Dimensional Regularization (DR). In DR, one
goes to D dimensions and the regulator, ϵ, is defined by
D ≡ 4− 2ϵ.
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Renormalization procedure in the GIRS scheme

▶ The GIRS scheme is employed for extracting the conversion matrices

(CS=±1)MS,GIRS and (C̃S=±1)MS,GIRS between GIRS and MS
schemes; we calculate the one-loop expressions for these conversion
matrices for various GIRS variants.

In the case of a multiplicatively renormalizable operator, O, a typical
condition in GIRS has the following form:

(ZGIRS
O )2⟨O(x)O†(y)⟩

∣∣
x−y=z̄

= ⟨O(x)O†(y)⟩tree
∣∣∣
x−y=z̄

,

where z̄ is a nonzero renormalization 4-vector scale.

▶ ⟨O(x)O†(y)⟩ is gauge independent.

▶ When operator mixing occurs, one needs to consider a set of
conditions involving more than one Green’s functions of two or more
gauge-invariant operators.
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Determination of mixing matrices – Green’s functions

The determination of the 5× 5 mixing matrices requires the calculation
of: (i) two-point Green’s functions with two four-quark operators:

G 2pt
OΓΓ̃;OΓ′ Γ̃′

(z) ≡ ⟨OΓΓ̃(x)O
†
Γ′Γ̃′(y)⟩, z ≡ x − y , x ̸= y .

(ii) three-point Green’s functions with one four-quark operator and two
quark bilinear operators (OΓ(x) = ψ̄f1(x)Γψf2(x)):

G 3pt
OΓ′ ;OΓΓ̃;OΓ′′

(z , z ′) ≡ ⟨OΓ′(x)OΓΓ̃(y)OΓ′′(w)⟩, z ≡ x − y , z ′ ≡ y − w ,

x ̸= y ̸= w ̸= x .

Two-point Green’s functions with one four-quark operator and one
bilinear operator are not considered since they vanish when
∆F = 2.
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Green’s functions – Corresponding Feynman diagrams

2 3 41

XX XXXX XX

Figure 2: Feynman diagrams contributing to ⟨OΓΓ̃(x)O
†
Γ′Γ̃′

(y)⟩, to order O(g 0)

(diagram 1) and O(g 2) (the remaining diagrams). Wavy (solid) lines represent
gluons (quarks). Diagrams 2 and 4 have also mirror variants.

1 2 3

X X X

X

4

X

5

Figure 3: Feynman diagrams contributing to ⟨OΓ′(x)OΓΓ̃(0)OΓ′′(y)⟩, to order
O(g 0) (diagram 1) and O(g 2) (the remaining diagrams). Wavy (solid) lines
represent gluons (quarks). A circled cross denotes the insertion of the
four-quark operator, and the solid squares denote the quark bilinear operators.
Diagrams 2-5 have also mirror variants.
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Renormalization Conditions for Parity Conserving operators
(Qi)

In the case of the Parity Conserving operators (Qi ) we need to calculate
the 25 elements of the mixing matrix for both S = +1 and S = −1:
From relevant 2-pt GFs, we get 15 conditions, and another 10 conditions
that will be extracted from the relevant 3-pt GFs.

[G̃
2pt

Q
S=±1
i

;Q
S=±1
j

(t)]GIRS ≡
5∑

k,l=1

(Z
S±1
ik

)GIRS(Z
S±1
jl

)GIRS G̃
2pt

Q
S=±1
k

;Q
S=±1
l

(t) = [G̃
2pt

Q
S=±1
i

;Q
S=±1
j

(t)]tree,

where i , j run from 1 to 5 and i ≤ j ; z4 := t is the GIRS renormalization
scale.

We have a variety of options for selecting the remaining conditions
involving three-point Green’s functions:

[G̃
3pt

OΓ;Q
S=±1
i

;OΓ

(t, t′)]GIRS ≡ (ZGIRS
OΓ

)2
5∑

k=1

(Z
S±1
ik

)GIRS G̃
3pt

OΓ;Q
S=±1
k

;OΓ

(t, t′) = [G̃
3pt

OΓ;Q
S=±1
i

;OΓ

(t, t′)]tree,

where i ∈ [1, 5], Γ ∈ {11, γ5, γµ, γµγ5, σµν}, and z4 := t, z ′4 := t ′ are
GIRS renormalization scales. In this case, the two bilinears must be the
same in order to obtain a nonzero Green’s function. ZGIRS

OΓ
is the

renormalization factor of the bilinear operator OΓ.
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Renormalization Conditions for Parity Violating operators
(Qi)

In the case of the Parity Violating operators (Qi ), the 5× 5 mixing
matrix is block diagonal for both S = +1 and S = −1, we need to
calculate only 9 elements (7 conditions for 2-pt GFs and 2 conditions for
3-pt GFs).

[G̃
2pt

QS=±1
1

;QS=±1
1

(t)]GIRS ≡ [(ZS±1
11

)GIRS ]2 G̃
2pt

QS=±1
1

;QS=±1
1

(t) = [G̃
2pt

QS=±1
1

;QS=±1
1

(t)]tree,

[G̃
2pt

QS=±1
i

;QS=±1
j

(t)]
GIRS

≡
3∑

k,l=2

(ZS±1
ik

)GIRS(ZS±1
jl

)GIRS G̃
2pt

QS=±1
k

;QS=±1
l

(t) = [G̃
2pt

QS=±1
i

;QS=±1
j

(t)]tree,

[G̃
2pt

QS=±1
i

;QS=±1
j

(t)]
GIRS

≡
5∑

k,l=4

(ZS±1
ik

)GIRS(ZS±1
jl

)GIRS G̃
2pt

QS=±1
k

;QS=±1
l

(t) = [G̃
2pt

QS=±1
i

;QS=±1
j

(t)]tree.

Note that in the above equations i ≤ j . The two conditions that include
three-point functions can be:

[G̃
3pt

OΓ;Q
S=±1
i

;OΓγ5

(t, t′)]GIRS ≡ ZGIRS
OΓ

ZGIRS
OΓγ5

3∑
k=2

(ZS±1
ik

)GIRS G̃
3pt

OΓ;Q
S=±1
k

;OΓγ5

(t, t′)

= [G̃
3pt

OΓ;Q
S=±1
i

;OΓγ5

(t, t′)]tree,

[G̃
3pt

OΓ;Q
S=±1
i

;OΓγ5

(t, t′)]
GIRS

≡ ZGIRS
OΓ

ZGIRS
OΓγ5

5∑
k=4

(ZS±1
ik

)GIRS G̃
3pt

OΓ;Q
S=±1
k

;OΓγ5

(t, t′)

= [G̃
3pt

OΓ;Q
S=±1
i

;OΓγ5

(t, t′)]tree.
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Results for tree level Green’s functions
We present our results for the bare tree-level two-point Green’s function
of two four-quark operators with arbitrary Dirac matrices and arbitrary
flavors (fi , f

′
i , i = 1, 2, 3, 4) carried by the quark fields.

⟨
(
ψ̄f1

(x)Γψf3
(x)ψ̄f2

(x)Γψf4
(x)

) (
ψ̄
f ′
1
(y)Γ′ψ

f ′
3
(y)ψ̄

f ′
2
(y)Γ′ψ

f ′
4
(y)

)
⟩tree =

Nc Γ(2 − ϵ)4

16 π8−4ϵ (z2)8−4ϵ
×

{
δ
f1 f

′
3
δ
f2 f

′
4

[Nc δf3 f
′
1
δ
f4 f

′
2

tr(Γ/zΓ′/z) tr(Γ/zΓ′/z) − δ
f3 f

′
2
δ
f4 f

′
1

tr(Γ/zΓ′/zΓ/zΓ′/z)]

+δ
f1 f

′
4
δ
f2 f

′
3

[Nc δf3 f
′
2
δ
f4 f

′
1

tr(Γ/zΓ′/z) tr(Γ/zΓ′/z) − δ
f3 f

′
1
δ
f4 f

′
2

tr(Γ/zΓ′/zΓ/zΓ′/z)]
}
,

where Nc is the number of colors.

The tree-level three-point Green’s function of one four-quark and two
quark bilinear operators for arbitrary Dirac matrices and flavors is given
below to all orders in ϵ and in terms of the D-vectors z ≡ x − y and
z ′ ≡ y − w , which connect the four-quark operator with the left and
right bilinear operators, respectively:

⟨
(
ψ̄
f ′
1
(x)Γ′ψ

f ′
2
(x)

) (
ψ̄f1

(y)Γψf3
(y)ψ̄f2

(y)Γψf4
(y)

) (
ψ̄
f ′′
1

(w)Γ′′ψ
f ′′
2

(w)

)
⟩tree =

Nc Γ(2 − ϵ)4

16 π8−4ϵ (z2)4−2ϵ (z′2)4−2ϵ
×

{
δ
f3 f

′
1
δ
f4 f

′′
1

[Nc δf1 f
′
2
δ
f2 f

′′
2

tr(Γ′/zΓ/z) tr(Γ/z′Γ′′/z′) − δ
f2 f

′
2
δ
f1 f

′′
2

tr(Γ′/zΓ/z′Γ′′/z′Γ/z)]

+δ
f4 f

′
1
δ
f3 f

′′
1

[Nc δf2 f
′
2
δ
f1 f

′′
2

tr(Γ′/zΓ/z) tr(Γ/z′Γ′′/z′) − δ
f1 f

′
2
δ
f2 f

′′
2

tr(Γ′/zΓ/z′Γ′′/z′Γ/z)]
}
.
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Results - examples for MS Green’s functions
As an example, we provide one two-point and one three-point Green’s
function renormalized in MS; they depend on the scales z and/or z ′

corresponding to the separations between the operators that are present
in each Green’s function, as well as on the MS renormalization scale µ̄
appearing in the renormalization of the coupling constant in D
dimensions: gR = µ−ϵZ−1

g gB [gB (gR) is the bare (renormalized)

coupling constant, µ = µ̄
√
eγE /4π].

[G
2pt

Q
S=±1
1

;Q
S=±1
1

(z)]
MS

=
4Nc

π8(z2)6

(
δ
f1 f

′
4
δ
f2 f

′
3

± δ
f1 f

′
3
δ
f2 f

′
4

)(
δ
f3 f

′
2
δ
f4 f

′
1

± δ
f3 f

′
1
δ
f4 f

′
2

)
×

±1 + Nc + 2
g2
MS

CF

16π2

[
± 6 + 7Nc ∓ 6

(
ln
(
µ̄
2z2

)
+ 2γE − 2 ln(2)

) ]
+ O(g4

MS
)

 ,

[G
3pt

Vµ ;Q
S=±1
1

;Vµ
(z, z′)]

MS
=

Nc

π8(z2)3(z′2)3

(
δ
f ′
1
f4
δ
f ′′
1

f3
± δ

f ′
1
f3
δ
f ′′
1

f4

)(
δ
f ′
2
f2
δ
f ′′
2

f1
± δ

f ′
2
f1
δ
f ′′
2

f2

)
×

{
Nc ± 1

2

[
1 − 2

zµ

z2
− 2

z′µ
z′2

+ 4
(z · z′)zµz′µ

z2z′2

]
±

g2
MS

CF

16π2

[
1 − 2

(zµ + z′µ)2

(z + z′)2

]

±
g2
MS

CF

16π2

[
1 − 2

zµ

z2
− 2

z′µ
z′2

+ 4
(z · z′)zµz′µ

z2z′2

]
×

2 − 3

ln

 µ̄2z2z′2

(z + z′)2

 + 2γE − 2 ln(2) ∓ Nc

 + O(g4
MS

)

}
.
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Results – MS-renormalized Green’s functions

The MS-renormalized two-point and three-point Green’s functions after
integration over timeslices are shown below. These are relevant for the
extraction of the conversion matrices. They are written in a compact
form for all four-quark and quark bilinear operators:

[G̃
2pt

Q
S=±1
i

;Q
S=±1
j

(t)]MS =
Nc

π6|t|9

(
δ
f1 f

′
4
δ
f2 f

′
3

± δ
f1 f

′
3
δ
f2 f

′
4

)(
δ
f3 f

′
2
δ
f4 f

′
1

± δ
f3 f

′
1
δ
f4 f

′
2

){ (
a
±
ij ;0

+ a
±
ij ;1

Nc

)

+
g2
MS

CF

16π2

[ (
b
±
ij ;0

+ b
±
ij ;1

Nc

)
+

(
ln
(
µ̄
2t2

)
+ 2γE

) (
c
±
ij ;0

+ c
±
ij ;1

Nc

) ]
+ O(g4

MS
)

}
,

[G̃
2pt

QS=±1
i

;QS=±1
j

(t)]
MS

=
Nc

π6|t|9

(
δ
f1 f

′
4
δ
f2 f

′
3

± δ
f1 f

′
3
δ
f2 f

′
4

)(
δ
f3 f

′
2
δ
f4 f

′
1

± (−1)δi2+δi3 δ
f3 f

′
1
δ
f4 f

′
2

){ (
ã
±
ij ;0

+ ã
±
ij ;1

Nc

)

+
g2
MS

CF

16π2

[(
b̃
±
ij ;0

+ b̃
±
ij ;1

Nc

)
+

(
ln
(
µ̄
2t2

)
+ 2γE

) (
c̃
±
ij ;0

+ c̃
±
ij ;1

Nc

)]
+ O(g4

MS
)

}
,

[G̃
3pt

OΓ;Q
S=±1
i

;OΓ

(t, t)]
MS

=
Nc

π4t6

(
δ
f ′
1
f4
δ
f ′′
1

f3
± δ

f ′
1
f3
δ
f ′′
1

f4

)(
δ
f ′
2
f2
δ
f ′′
2

f1
± δ

f ′
2
f1
δ
f ′′
2

f2

){ (
d
±
iΓ;0

+ d
±
iΓ;1

Nc

)

+
g2
MS

CF

16π2

[ (
e
±
iΓ;0

+ e
±
iΓ;1

Nc

)
+

(
ln
(
µ̄
2t2

)
+ 2γE

) (
f
±
iΓ;0

+ f
±
iΓ;1

Nc

) ]
+ O(g4

MS
)

}
,

[G̃
3pt

OΓ;Q
S=±1
i

;OΓγ5

(t, t)]
MS

=
Nc

π4t6

(
δ
f ′
1
f4
δ
f ′′
1

f3
± δ

f ′
1
f3
δ
f ′′
1

f4

)(
δ
f ′
2
f2
δ
f ′′
2

f1
± (−1)δi2+δi3 δ

f ′
2
f1
δ
f ′′
2

f2

){ (
d̃
±
iΓ;0

+ d̃
±
iΓ;1

Nc

)

+
g2
MS

CF

16π2

[(
ẽ
±
iΓ;0

+ ẽ
±
iΓ;1

Nc

)
+

(
ln
(
µ̄
2t2

)
+ 2γE

) (
f̃
±
iΓ;0

+ f̃
±
iΓ;1

Nc

)]
+ O(g4

MS
)

}
,

where a±ij ;k , b
±
ij ;k , c

±
ij ;k , ã

±
ij ;k , b̃

±
ij ;k , c̃

±
ij ;k , d

±
iΓ;k , e

±
iΓ;k , f

±
iΓ;k , d̃

±
iΓ;k , ẽ

±
iΓ;k , f̃

±
iΓ;k

are numerical coefficients [https://arxiv.org/pdf/2406.08065]. 20 / 27



Results – one-loop conversion matrices

The one-loop conversion matrices between different variants of GIRS and
the MS scheme are extracted from our results by rewriting the GIRS
conditions in terms of the conversion matrices, as follows:

[G̃2pt

QS=±1
i ;QS=±1

j

(t)]
MS

=
5∑

k,l=1

(C S±1
ik )MS,GIRS (C S±1

jl )MS,GIRS [G̃2pt

QS=±1
k

;QS=±1
l

(t)]tree,

[G̃3pt

OΓ;Q
S=±1
i ;OΓ

(t, t)]
MS

= (CMS,GIRS
OΓ

)2
5∑

k=1

(C S±1
ik )MS,GIRS [G̃3pt

OΓ;Q
S=±1
k

;OΓ
(t, t)]tree,

[G̃2pt

QS=±1
i ;QS=±1

j

(t)]
MS

=
5∑

k,l=1

(C̃ S±1
ik )MS,GIRS (C̃ S±1

jl )MS,GIRS [G̃2pt

QS=±1
k

;QS=±1
l

(t)]tree,

[G̃3pt

OΓ;Q
S=±1
i ;OΓγ5

(t, t)]
MS

= (CMS,GIRS
OΓ

) (CMS,GIRS
OΓγ5

)
5∑

k=1

(C̃ S±1
ik )MS,GIRS ×

[G̃3pt

OΓ;Q
S=±1
k

;OΓγ5

(t, t)]tree,

where CMS,GIRS
OΓ

is the conversion factor of the quark bilinear operator
OΓ; they have been calculated to one loop in previous works. Note that

the conversion matrix (C̃S±1)MS,GIRS has the block diagonal form of
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Results – one-loop conversion matrices for parity
conserving operators

From the options that give the smallest sum of squares of the
off-diagonal coefficients (smallest mixing contributions), we choose one
to present below. We avoid including tensor operators in the selected set
of conditions, which are typically more noisy in simulations. Also, we
prefer to have more scalar or pseudoscalar operators which are
computationally cheaper compared to other bilinear operators. The
selected set of conditions includes the following 10 renormalized
three-point functions:

G̃ 3pt

S;QS=±1
1 ;S

(t, t), G̃ 3pt

P;QS=±1
1 ;P

(t, t), G̃ 3pt

Vi ;Q
S=±1
1 ;Vi

(t, t), G̃ 3pt

S;QS=±1
2 ;S

(t, t), G̃ 3pt

P;QS=±1
2 ;P

(t, t),

G̃ 3pt

S;QS=±1
3 ;S

(t, t), G̃ 3pt

S;QS=±1
5 ;S

(t, t), G̃ 3pt

P;QS=±1
5 ;P

(t, t), G̃ 3pt

Vi ;Q
S=±1
5 ;Vi

(t, t), G̃ 3pt

Ai ;Q
S=±1
5 ;Ai

(t, t),

and the solution reads:

(CS±1
ij )MS,GIRS = δij+

g2
MS

16π2

+1∑
k=−1

[
g±
ij ;k +

(
ln
(
µ̄2t2

)
+ 2γE

)
h±ij ;k

]
Nk

c +O(g4
MS

),

where g±
ij ;k , h

±
ij ;k are numerical coefficients.
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Results – one-loop conversion matrices for parity
conserving operators

i j g
±
ij ;−1

g
±
ij ;0

g
±
ij ;+1

h
±
ij ;−1

h
±
ij ;0

h
±
ij ;+1

1 1 −869/140 ±379/140 7/2 3 ∓3 0
1 2 2 ∓(723/280 − 6 ln(2)) −2 0 0 0
1 3 −723/140 + 12 ln(2) 0 0 0 0 0
1 4 −4 ±4 0 0 0 0
1 5 −2 ±2 0 0 0 0
2 1 397/280 + 6 ln(2) ±(163/280 − 6 ln(2)) −2 0 0 0
2 2 −9/2 ±2 7/2 −3 0 0
2 3 4 ∓2 0 0 ∓6 0
2 4 4 ±8 0 0 0 0
2 5 −2 0 0 0 0 0
3 1 −1 ±1 0 0 0 0
3 2 1 ±99/280 0 0 0 0
3 3 −38/35 ±2 251/140 −3 0 3
3 4 4 ±239/280 −321/140 0 0 0
3 5 0 ∓239/560 0 0 0 0
4 1 −1 ±1 0 0 0 0
4 2 1 ∓239/280 0 0 0 0
4 3 4 ±2 −799/140 0 0 0
4 4 −307/112 + 3 ln(2) ±169/140 251/140 −3 ∓3 3
4 5 −269/480 + 1/2 ln(2) ±(869/1680 − ln(2)) 0 1 ∓1/2 0
5 1 −6 ±6 0 0 0 0
5 2 −6 0 0 0 0 0
5 3 0 ∓12 0 0 0 0
5 4 −269/40 + 6 ln(2) ∓(29/140 − 12 ln(2)) 0 12 ±6 0
5 5 −1229/240 − 3 ln(2) ±309/140 1709/420 1 ∓3 −1

Table 2: Numerical values of the coefficients g±
ij ;k , h

±
ij ;k appearing in

(C S±1
ij )MS,GIRS = δij +

g2
MS

16π2

∑+1
k=−1

[
g±
ij ;k +

(
ln
(
µ̄2t2

)
+ 2γE

)
h±
ij ;k

]
Nk

c .
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Results – one-loop conversion matrices for parity violating
operators

The option that gives the smallest sum of squares of the off-diagonal
coefficients include the following renormalized three-point
functions:

G̃ 3pt

S ;QS=±1
2 ;P

(t, t), G̃ 3pt

S;QS=±1
5 ;P

(t, t),

and the solution reads:

(C̃S±1
ij )MS,GIRS = δij+

g2
MS

16π2

+1∑
k=−1

[
g̃±
ij ;k +

(
ln
(
µ̄2t2

)
+ 2γE

)
h̃±ij ;k

]
Nk

c +O(g4
MS

),

where the coefficients g̃±
ij ;k , h̃

±
ij ;k , are numerical coefficients.
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Results – one-loop conversion matrices for parity violating
operators

i j g̃
±
ij ;−1

g̃
±
ij ;0

g̃
±
ij ;+1

h̃
±
ij ;−1

h̃
±
ij ;0

h̃
±
ij ;+1

1 1 −869/140 ±379/140 7/2 3 ∓3 0
1 2 0 0 0 0 0 0
1 3 0 0 0 0 0 0
1 4 0 0 0 0 0 0
1 5 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 2 −9/2 0 7/2 −3 0 0
2 3 0 ∓2 0 0 ∓6 0
2 4 0 0 0 0 0 0
2 5 0 0 0 0 0 0
3 1 0 0 0 0 0 0
3 2 0 ±99/280 0 0 0 0
3 3 −38/35 0 251/140 −3 0 3
3 4 0 0 0 0 0 0
3 5 0 0 0 0 0 0
4 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0
4 3 0 0 0 0 0 0
4 4 −307/112 + 3 ln(2) ±169/140 251/140 −3 ∓3 3
4 5 −269/480 + 1/2 ln(2) ±(869/1680 − ln(2)) 0 1 ∓1/2 0
5 1 0 0 0 0 0 0
5 2 0 0 0 0 0 0
5 3 0 0 0 0 0 0
5 4 −269/40 + 6 ln(2) ∓(29/140 − 12 ln(2)) 0 12 ±6 0
5 5 −1229/240 − 3 ln(2) ±309/140 1709/420 1 ∓3 −1

Table 3: Numerical values of the coefficients g̃±
ij ;k , h̃

±
ij ;k appearing in

(C̃ S±1
ij )MS,GIRS = δij +

g2
MS

16π2

∑+1
k=−1

[
g̃±
ij ;k +

(
ln
(
µ̄2t2

)
+ 2γE

)
h̃±
ij ;k

]
Nk

c .
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Summary – Future plans

▶ Perturbative study of the renormalization of four-quark operators
involved in ∆F = 2 processes by using a gauge-invariant
renormalization scheme (GIRS).

▶ One-loop perturbative calculation of two-point Green’s functions
involving products of two four-quark operators, as well as
three-point Green’s functions with one four-quark and two bilinear
operators in DR.

▶ Mixing matrices: (ZS±1)GIRS and (ZS±1)GIRS.

▶ Conversion matrices from GIRS to MS: (CS±1)MS,GIRS and

(C̃S±1)MS,GIRS.

▶ Future plans: Investigation of four-quark operators with ∆F = 1 and
∆F = 0.
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