$\Delta I = 1/2$ process of $K \rightarrow \pi \pi$ decay on multiple ensembles with periodic boundary conditions

Masaaki Tomii (University of Connecticut, RIKEN BNL Research Center)

> Lattice 2024 Jul 28–Aug 3, 2024

RIKEN BNL Research Center

LIVERPOOL

Boston University Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) **Tobias Tsang**

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum **Bob Mawhinney** Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov **Douglas Stewart** Joshua Swaim

DESY Zeuthen **Raoul Hodgson**

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Alessandro Barone

Nicolas Garron

LLNL Aaron Meyer

Autonomous University of Madrid Nikolai Husung

University of Milano Bicocca Mattia Bruno

Johannes Gutenberg University of Mainz

Liverpool Hope/Uni. of Liverpool

Nara Women's University Hiroshi Ohki

Peking University

Xu Feng **Tian Lin**

University of Regensburg

Andreas Hackl Daniel Knüttel **Christoph Lehner** Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev **Oliver Witzel**

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

$K \rightarrow \pi \pi \& Direct CPV$

ε' vs ε

- Re $(\epsilon'/\epsilon)_{exp} = 16.6(2.3) \times 10^{-4}$ (KTeV, NA48)
- Explained by SM?

Lattice 2024 Masaaki Tomii (UConn, RBRC)

 $\frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)}$ $= 1 - 6 \times \text{Re}(\epsilon'/\epsilon)$

$K \rightarrow \pi \pi Amplitude and \epsilon'$

 $\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \operatorname{Re}\left\{\frac{\mathrm{i}\omega \mathrm{e}^{\mathrm{i}\delta_{2}-\delta_{0}}}{\sqrt{2}\epsilon}\left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$

Lellouch-Lüscher finite volume correction

$$A_{I} = \underbrace{F}_{\sqrt{2}}^{I} V_{us}^{*} V_{ud} \sum_{i,j} [z_{i}(\mu)]_{Wils}$$

- Matrix elements < $(\pi\pi)_I | Q_i^{lat} | K >$ from 3pt correlation functions
- A₂ amplitude has been determined very precisely [PRD91,074502 (2015)]

Masaaki Tomii (UConn, RBRC) 4 Lattice 2024

 $\pi\pi$ phase shifts at m_K

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\right]\bigg\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0)$$

• A₀ challenging — disconnected diagrams, power divergences – main focus

Earlier calculations at physical $m_{\pi} \& m_{K}$

 $\text{Re}(\epsilon'/\epsilon) \times 10^4$

Lattice 2024 Masaaki Tomii (UConn, RBRC)

Systematic errors on Im A₀

Finite lattice spacing

Wilson coefficients

Lelloch-Lüscher FV correction

Residual FV correction

Parametric error

Off-shellness

Renormalization

Missing G₁ operator

TOTAL

Additional systematic error on ε'

► ϵ' could be significantly affected by EM/IB effects ($\Delta I = 1/2$ rule $\rightarrow \sim 20\%$)

Masaaki Tomii (UConn, RBRC) Lattice 2024

Systematic errors in 2020

Improvement desired

Improvement study underway

Hope to compute near future (PBC appear necessary)

Systematic errors on Im A₀

Finite lattice spacing

Wilson coefficients

Lelloch-Lüscher FV correction

Residual FV correction

Parametric error

Off-shellness

Renormalization

Missing G₁ operator

TOTAL

Additional systematic error on ε'

Lattice 2024 Masaaki Tomii (UConn, RBRC)

Systematic errors in 2020

Hope to compute near future (PBC appear necessary)

Lattice setup

- RBC/UKQCD's 2+1-flavor MDWF ensembles at physical pion & kaon masses
 - $24^3 \times 64$, $a^{-1} = 1.0$ GeV, 439 configurations
 - $32^3 \times 64$, $a^{-1} = 1.4$ GeV, 470 configurations
- All-to-all quark propagators
 - 2,000 low modes for light quarks (no low mode for strange) high-mode part: spin, color and time dilutions =>4x3x64 = 768 inversions
- Sample AMA in use (fewer configurations for exact)

For extraction of ME

$$\mathsf{M}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}^{\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}}}{\mathsf{C}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t})} \right]$$

- $C^{\pi\pi}$: 2-pt function of $\pi\pi$ operator
- C^K : 2-pt function of kaon operator
- $C^{(3)}$: K $\rightarrow \pi\pi$ 3-pt function

Lattice 2024 Masaaki Tomii (UConn, RBRC) 8

Matrix elements

For extraction of ME

$$\mathsf{M}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}^{\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}}}{\mathsf{C}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t})} \right]$$

- $C^{\pi\pi}$: 2-pt function of $\pi\pi$ operator
- C^K : 2-pt function of kaon operator
- $C^{(3)}$: K $\rightarrow \pi\pi$ 3-pt function

Lattice 2024 Masaaki Tomii (UConn, RBRC) 8

Matrix elements

For extraction of ME

$$\mathsf{M}_{n}^{eff}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}_{n}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}_{n}^{\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}_{1}}}{\mathsf{C}_{n}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t}_{1})} \right]^{1/2} \xrightarrow{\mathsf{large } \mathsf{t}_{1} \And \mathsf{t}_{2}} \mathsf{M}_{n} \left(= < \pi\pi(\underbrace{\mathsf{270 MeV}}_{\mathsf{E}_{n}}) \mid \mathsf{H}_{W} \mid \mathsf{K}_{n} \in \mathsf{M}_{n} \left(\mathsf{E}_{n} \in \mathsf{M}_{n} \in \mathsf{M}_{n} \right)$$

C^K : 2-pt function of kaon operator

 $C_n^{(3)}$: K $\rightarrow \pi\pi$ 3-pt function with n-th $\pi\pi$ operator used in $C_n^{\pi\pi}$

Energy-conserving process found for excited $\pi\pi$ state – confronting PBC approach

Energy of 2 pions in rest frame with PBC

	momentum (non-interacting ππ's case)	Energy
n = 0	(0,0,0)	$2m_{\pi}$ (+ interaction)
n = 1	2π/L x (1,0,0)	could be ≈ mĸ
n = 2	2π/L x (1,1,0)	

Matrix elements

 $C_n^{\pi\pi}$: 2-pt function of $\pi\pi$ operator that couples well with only n-th state

Variational method [Lüscher, 1990]

Solving GEVP (Generalized Eigenvalue Problem)

 $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0)$

• $O'_n = \sum_a v^*_{n,a} O_a$ couples mostly with n-th state

$$\lambda_n(t,t_0) = e^{-E_n(t-t_0)}$$

- $\pi\pi$ operators used in this work:
 - $= \pi_{p=(0,0,0)}\pi_{p=(0,0,0)}$
 - $\Pi_{p=(0,0,1)} \Pi_{p=(0,0,-1)}$
 - $\mathbf{h} \quad \mathbf{\pi}_{p=(0,1,1)} \mathbf{\pi}_{p=(0,-1,-1)}$
 - $\pi_{p=(1,1,1)}\pi_{p=(-1,-1,-1)}$

 - KK ~ $\overline{K}K + K^+K^-$: for checking further excited-state contamination

C(t): N x N correlator matrix $C_{ab}(t) = \langle O_a(t)O_b(0)^{\dagger} \rangle$

• $\sigma \sim \overline{u}u + \overline{d}d$: turned out to be very important to extract ~500-MeV state (e.g. PRD 102,054509)

Re-based GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Example:

Masaaki Tomii (UConn, RBRC) 10 **Lattice 2024**

Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent

- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations

Re-based GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Example:

Masaaki Tomii (UConn, RBRC) 10 **Lattice 2024**

Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent

- couples well with the ground st.
- couples well with the 1st excited st.

. . .

- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations

Re-based GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Example:

Masaaki Tomii (UConn, RBRC) 10 **Lattice 2024**

Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent

- couples well with the ground st.
- couples well with the 1st excited st.

. . .

- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations 3 operators to form next basis
 - 1 operator to be excluded from next basis

$aE_{\pi\pi}^{eff}$ from $\pi\pi$ 2pt func & GEVP

Correction with non-interacting $\pi\pi$ system on lattice and continuum applied

Plateau appears at earlier time separations

Lattice 2024 Masaaki Tomii (UConn, RBRC)

3rd excited state shown is from the 4-operator basis, the others from 3-operator basis

$aE_{\pi\pi}^{eff}$ from $\pi\pi$ 2pt func & GEVP

3rd excited state shown is from the 4-operator basis, the others from 3-operator basis

Correction with non-interacting $\pi\pi$ system on lattice and continuum applied

Plateau appears at earlier time separations

Masaaki Tomii (UConn, RBRC) 11 **Lattice 2024**

Effective matrix elements

$$M_{n,i}^{eff}(t_2, t_1) = C_{n,i}^{(3)}(t_2, t_1) \left[\frac{e^{E_n^{\pi t_2}} e^{E^{K} t_1}}{C_n^{\pi \pi}(t_2) C^{K}(t_1)} \right]^{1/2}$$

n: state index

i: operator index

 $\xrightarrow{\mathsf{large} \ t_1 \ \& \ t_2} \to \mathsf{M}_{\mathsf{n},\mathsf{i}}$

- Weighted average over $t_1 = t_{op} t_K$ taken
- State n extracted by (R)GEVP eigenvector $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0)$
 - $t t_0$ fixed to 2
 - No significant dependence on t₀ seen around current choice: t₀ = 5
- RGEVP ($5 \rightarrow 4 \rightarrow 3$) plateauing from $t_2 = 3$ or 4
 - smaller error than 4x4
 - potential excited-state contamination in 3x3
 - GEVP statistically near singular for 5x5

Lattice 2024 Masaaki Tomii (UConn, RBRC)

12

Result for A₀

- O(a²) scaling violation potentially significant
 - Extrapolation with $c_0 + c_2 a^2 + c_4 a^4$ with a constraint $|c_2 a^2| = 2 |c_4 a^4|$ at $a^{-1} = 1.0$ GeV corresponding to the coarser lattice did not change the result beyond statistical error

Lattice 2024

Masaaki Tomii (UConn, RBRC) 13

Result for \varepsilon'

1.4 GeV lattice calculation with PBC and GPBC consistent

Continuum extrapolation attempted

Lattice 2024

Masaaki Tomii (UConn, RBRC) 14

Current main sources of systematic errors on ε'

- Finite lattice spacing
 - We did first attempt continuum extrapolation with multiple ensembles
 - 1.0 & 1.4 GeV ensembles \rightarrow O(a²) scaling violation potentially significant
 - Finer lattice calculations on-going & planned $\rightarrow \rightarrow \rightarrow$
- Wilson coefficients
- EM/IB effects

Masaaki Tomii (UConn, RBRC) **Lattice 2024**

An improvement study underway, possibly to be incorporated in the upcoming paper

Current main sources of systematic errors on ε'

- Finite lattice spacing
 - We did first attempt continuum extrapolation with multiple ensembles
 - 1.0 & 1.4 GeV ensembles \rightarrow O(a²) scaling violation potentially significant
 - Finer lattice calculations on-going & planned $\rightarrow \rightarrow \rightarrow$
- Wilson coefficients
- EM/IB effects

Masaaki Tomii (UConn, RBRC) **Lattice 2024**

An improvement study underway, possibly to be incorporated in the upcoming paper

Current main sources of systematic errors on ε'

- Finite lattice spacing
 - We did first attempt continuum extrapolation with multiple ensembles
 - 1.0 & 1.4 GeV ensembles \rightarrow O(a²) scaling violation potentially significant
 - Finer lattice calculations on-going & planned $\rightarrow \rightarrow \rightarrow$
- Wilson coefficients
- EM/IB effects

Masaaki Tomii (UConn, RBRC) **Lattice 2024**

An improvement study underway, possibly to be incorporated in the upcoming paper

Current main sources of systematic errors on ε'

- Finite lattice spacing
 - We did first attempt continuum extrapolation with multiple ensembles
 - 1.0 & 1.4 GeV ensembles \rightarrow O(a²) scaling violation potentially significant
 - Finer lattice calculations on-going & planned $\rightarrow \rightarrow \rightarrow$
- Wilson coefficients
- EM/IB effects

Masaaki Tomii (UConn, RBRC) **Lattice 2024**

An improvement study underway, possibly to be incorporated in the upcoming paper

Current main sources of systematic errors on ε'

- Finite lattice spacing
 - We did first attempt continuum extrapolation with multiple ensembles
 - 1.0 & 1.4 GeV ensembles \rightarrow O(a²) scaling violation potentially significant
 - Finer lattice calculations on-going & planned $\rightarrow \rightarrow \rightarrow$
- Wilson coefficients
- EM/IB effects

Masaaki Tomii (UConn, RBRC) **Lattice 2024**

An improvement study underway, possibly to be incorporated in the upcoming paper

