Contribution of the η to a lattice calculation of $K_{\text{L}} \longrightarrow \mu^+ \mu^-$ decay

Ceran Hu^{∗ 1} En-Hung Chao¹

¹Columbia University

August 2, 2024, Lattice 2024

On behalf of RBC/UKQCD collaboration Based on ongoing work with Norman Christ

∗ speaker

- **•** Introduction
- Study of η on lattice
- Methods to remove η
- **•** Preliminary results
- Conclusion and outlook

Introduction

Long distance 2 γ exchange contribution to $K_{\text{L}} \to \mu^+ \mu^-$:

$$
\mathcal{A}_{K_{\mathrm{L}}\to\mu^{+}\mu^{-}} = \int d^{4}x d^{4}r \; K_{\mu\nu}(r) \langle J_{\mu}(r)J_{\nu}(0)\mathcal{H}_{\nu}(x)|K_{\mathrm{L}}\rangle(1)
$$
\n
$$
\mathcal{H}_{\mathrm{w}} = C_{1}\mathcal{Q}_{1} + C_{2}\mathcal{Q}_{2} \tag{2}
$$

$$
Q_1 = (\overline{s}_a d_a)_{V-A} (\overline{u}_b u_b)_{V-A}
$$
 (3)

$$
Q_2 = (\bar{s}_a d_b)_{V-A} (\bar{u}_b u_a)_{V-A} \tag{4}
$$

 $K_{\mu\nu}(r)$ EM kernel for QED_∞, C_i Wilson coefficients.

Figure 1: 2 γ exchange contribution to $K_{\rm L} \rightarrow \mu^+ \mu^-$

Introduction

Unphysical intermediate state contribution:

$$
\sum_{n} \int d^{4}rd^{4}x \; K_{\mu\nu}(r) \langle J_{\mu}(r)J_{\nu}(0)|n\rangle \langle n|\mathcal{H}_{\nu}(x)|K_{\mathcal{L}}\rangle \frac{e^{(M_{K}-M_{n})\delta}}{M_{K}-M_{n}} \tag{5}
$$

 δ is time separation between \mathcal{H}_{w} and the earliest EM current. $n = \pi$: $M_K - M_\pi \approx 0.365 a^{-1} \longrightarrow$ exponentially growing term. $n = \eta$: $M_K - M_\eta \approx -0.06a^{-1} \longrightarrow$ slowly decaying term.

Figure 2: intermediate state contribution of π and η

Study of η on lattice

Preliminary GEVP study:

$$
C(t) = \begin{pmatrix} \langle O_I(t) O_I^{\dagger}(0) \rangle & \langle O_s(t) O_I^{\dagger}(0) \rangle \\ O_I(t) O_s^{\dagger}(0) & \langle O_s(t) O_s^{\dagger}(0) \rangle \end{pmatrix}
$$
(6)

$$
O_I = \frac{i}{\sqrt{2}} (\overline{u} \gamma_5 u + \overline{d} \gamma_5 d)
$$
(7)

$$
O_s = i \overline{s} \gamma_5 s
$$
(8)

Generalized Eigenvalue Problem (GEVP) solves for the η and η' mass:

$$
C(t)V_n(t, t_0) = \lambda_n(t, t_0) C(t_0) V_n(t, t_0)
$$
 (9)

$$
M_n(t,t_0) = \ln \frac{\lambda_n(t,t_0)}{\lambda_n(t+a,t_0)}
$$
 (10)

$$
t = t_0 + a \tag{11}
$$

Study of η on lattice

Figure 3: GEVP results on lattice with $1/a = 1.015$ GeV and physical quark masses

Masses determined by GEVP[∗] :

$$
aM_{\eta} = 0.569(0.019) \qquad aM_{\eta'} = 0.996(0.060) \qquad (12)
$$

 * a M_{η} is obtained with fitting range $t \in [4,8]$, a $M_{\eta'}$ is obtained with fitting range $t \in [2,4]$

Study of η on lattice

- \bullet *η*-related 3 point functions
	- O_s : better statistics and overlap with η .
	- Only η and η' matter at large t.
	- Two-state fit:

$$
A(t) = A_{\eta}e^{-M_{\eta}t} + A_{\eta'}e^{-M_{\eta'}t}
$$
\n(13)

 M_n and $M_{n'}$ are fixed in the ansatz from GEVP in Eqs.(12).

Preliminary results for 3 point functions[∗] :

Table 1: 3 point function results from two-state fit

∗ Different methods are explored, the two-state fit described here allows the most precise determination. $K_{\mu\nu}(r)$ in $\int d^4r \; K_{\mu\nu}(r) \left\langle J_\mu(r) J_\nu(0) \right| \eta \right\rangle$ uses M_K instead of M_η , which will be corrected.

† Experimental results are converted to the same convention as lattice results.

• Method 1: direct subtraction

• Subtract unphysical η contribution at time slice δ :

$$
-\mathcal{A}_{\eta} \frac{e^{(M_K - M_{\eta})\delta}}{M_K - M_{\eta}} \qquad (\delta > 0)
$$
 (14)

with overlap A_n :

$$
\mathcal{A}_{\eta} = \int d^4 r d^4 x \; K_{\mu\nu}(r) \, \langle J_{\mu}(r) J_{\nu}(0) | \eta \rangle \, \langle \eta | \mathcal{H}_{\nu}(x) | K_{\nu} \rangle \quad (15)
$$

- Need to avoid $O(a)$ error when doing direct subtraction.
- Direct subtraction can also remove unphysical π contribution.

Methods to remove η

- Method 2: adding $c_s(\bar{s}d + \bar{d}s)$
	- Ward identity:

$$
\begin{pmatrix} d \\ s \end{pmatrix} \longrightarrow (\mathcal{I}_{2\times 2} + \epsilon T) \begin{pmatrix} d \\ s \end{pmatrix}, \qquad T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \tag{16}
$$

$$
\langle (m_d - m_s)(\bar{s}d + \bar{d}s) \mathcal{O}_{\mu\nu} + i \partial_{\lambda} (\bar{s}\gamma_{\lambda}d - \bar{d}\gamma_{\lambda}s) \mathcal{O}_{\mu\nu} \rangle = 0 \tag{17}
$$

$$
\mathcal{O}_{\mu\nu} = J_{\mu} J_{\nu} \hat{K}_{\mathcal{L}} \tag{18}
$$

• Redefine \mathcal{H}_w to eliminate η :

$$
\mathcal{H}'_{w} = \sum_{i=1}^{2} C_{i} \{ Q_{i} + c_{si}(\bar{s}d + \bar{d}s) \} \qquad (19)
$$
\n
$$
c_{s1} = -\frac{\langle \eta | Q_{1} | K_{L} \rangle}{\langle \eta | \bar{s}d + \bar{d}s | K_{L} \rangle} = 9.65(3.23) \times 10^{-3} \qquad (20)
$$
\n
$$
c_{s2} = -\frac{\langle \eta | Q_{2} | K_{L} \rangle}{\langle \eta | \bar{s}d + \bar{d}s | K_{L} \rangle} = -1.99(1.10) \times 10^{-3} \qquad (21)
$$

Methods to remove η

- Method 3: adding $c_s(\bar{s}d + \bar{d}s)$ to isospin 0 part
	- Isospin decomposition with $N_f = 2 + 1$:

$$
J_{\mu}^{I=1} = \bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d \propto |I=1\rangle \tag{22}
$$

$$
J_{\mu}^{I=0} = \bar{u}\gamma_{\mu}u + \bar{d}\gamma_{\mu}d + 2\bar{s}\gamma_{\mu}s \propto |I=0\rangle \tag{23}
$$

$$
\left(J_{\mu}J_{\nu}\right)^{l=1} = \frac{1}{12}\left(J_{\mu}^{l=0}J_{\nu}^{l=1}+J_{\mu}^{l=1}J_{\nu}^{l=0}\right) \tag{24}
$$

$$
\left(J_{\mu}J_{\nu}\right)^{l=0\&l=2} = \frac{1}{4}J_{\mu}^{l=1}J_{\nu}^{l=1} + \frac{1}{36}J_{\mu}^{l=0}J_{\nu}^{l=0} \tag{25}
$$

• Only isospin 0 part has non-zero overlap with η .

- Add $c_s(\bar{s}d + \bar{d}s)$ to isospin 0 part, and modify Ward identity: $\big\langle (m_d-m_s)(\bar{s}d+\bar{d}s) \mathcal{O}'_{\mu\nu}+i\partial_\lambda(\bar{s}\gamma_\lambda d-\bar{d}\gamma_\lambda s) \mathcal{O}'_{\mu\nu} \big\rangle = \text{c.t.} (26)$ $\mathcal{O}_{\mu\nu}'=\left(J_\mu J_\nu\right)^{l=0$ &l=2 $\hat{\mathcal{K}}_l$ (27)
	- Contact terms in Eqs.(26) are 3 point functions that can be precisely determined on the lattice.

Methods to remove η

- Method 4: adding $d_s(\bar{s}d+\bar{d}s)$ to remove $1/a^2$ divergence
	- $1/a^2$ power divergence in weak Hamiltonian can be removed:

$$
\tilde{\mathcal{H}}_{w} = \sum_{i=1}^{2} C_{i} \left\{ Q_{i} + d_{si} (\bar{s}d + \bar{d}s) \right\}
$$
 (28)

$$
d_{s1} = -\frac{\langle \pi | \mathcal{Q}_1 | K_{\rm L} \rangle}{\langle \pi | \bar{s}d + \bar{d}s | K_{\rm L} \rangle} = 3.724(43) \times 10^{-4} \quad (29)
$$

$$
d_{s2} = -\frac{\langle \pi | \mathcal{Q}_2 | K_{\rm L} \rangle}{\langle \pi | \bar{s}d + \bar{d}s | K_{\rm L} \rangle} = 19.635(46) \times 10^{-4} \quad (30)
$$

Need to directly subtract η from $\tilde{\mathcal{H}}_w$ by Eqs.(14) and (15).

Figure 4: Diagrams with closed quark loop

 η contribution to $K_{\text{L}} \rightarrow \mu^+ \mu^-$

Ceran Hu (Columbia University) 11/18

• Real part

Figure 5: Real part of 2 γ contribution to $K_{\rm L} \rightarrow \mu^+ \mu^-$ amplitude

• Imaginary part

Figure 6: Imaginary part of 2 γ contribution to $K_{\rm L} \rightarrow \mu^+ \mu^-$ amplitude

• Lattice amplitudes can be related to experiments:

$$
|A_{K_{\mathrm{L}}\to\mu^{+}\mu^{-}}| = \frac{1}{e^{4}V_{ud}V_{us}\frac{G_{F}}{\sqrt{2}}}\sqrt{\frac{8\pi M_{K}\Gamma_{K_{\mathrm{L}}\to\mu^{+}\mu^{-}}}{\beta}}
$$
(31)

$$
\beta = \sqrt{1-\frac{4m_{\mu}^{2}}{M_{K}^{2}}}
$$
(32)

• Unphysical η contribution:

$$
\mathcal{A}_{K_{\mathrm{L}}\to\mu^{+}\mu^{-}}^{\eta}(\delta)=\frac{\mathrm{e}^{(M_{K}-M_{\eta})\delta}}{M_{K}-M_{\eta}}\int d^{4}rd^{4}x\,K_{\mu\nu}(r)\,\langle J_{\mu}(r)J_{\nu}(0)|\eta\rangle\,\langle\eta|\mathcal{H}_{\mathrm{w}}(x)|K_{\mathrm{L}}\rangle\tag{33}
$$

Table 2: Comparison between the decay amplitudes from lattice and experiments

real part

Figure 7: Real part results in Table 2

Figure 8: Imaginary part results in Table 2

Conclusion and outlook

- We perform a preliminary study of η on 24ID, including η mass and relevant 3 point functions.
- \bullet We propose 4 different methods to remove unphysical η contribution. Results from different methods show good consistency.
- We observe that large statistical errors are introduced from the poor determination of η -related quantities.
- \bullet We expect that on finer lattices, η -related quantities can be more precisely determined.
- We find a 2σ discrepancy between lattice computation and experimental results. A better understanding on systematic uncertainties and scaling behavior is needed.

Thanks for your attention!