Enhanced Lattice Studies on ε_K and ΔM_K

Yikai Huo RBC-UKQCD Collaborations

August 2nd, 2024

Yikai Huo RBC-UKQCD Collaborations [Enhanced Lattice Studies on](#page-17-0) ε_K and ΔM_K August 2nd, 2024 1/18

2 [Theoretical Background](#page-4-0)

∍ **D**

4 **D F** ∢●●

- Weak interaction is least understood section in Standard Model. The weak interaction naturally enables CP violation.
- Kaon is the lightest meson which contains a strange quark. ΔM_K is a very good candidate to test the validity of the Standard Model.
- Analytical methods focus on short distance part of ε_K . A more precise calculation of the long-distance part, $\varepsilon_K(LD)$, is necessary.
- Both ΔM_K and $\varepsilon_K(LD)$ are highly non-perturbative, good candidates for lattice calculation, having some overlap in calculation.

RBC-UKQCD collaboration has obtained a ΔM_K result with physical quark masses and long-distance contribution to ε_K with unphysical quark masses.

- "Long-distance contribution to ε_K from lattice QCD", Z. Bai, N. H. Christ, J. M. Karpie, C. T. Sachrajda, A. Soni, B. Wang, Phys.Rev.D 109 (2024) 5, 054501
- "Lattice calculation of the mass difference between the long- and short-lived K mesons for physical quark masses" Bigeng Wang, Lattice 2021

Kaon Mixing

Neutral Kaon Mixing

$$
i\frac{d}{dt}\begin{pmatrix} |K^0(t)\rangle \\ |\bar{K}^0(t)\rangle \end{pmatrix} = \left(\begin{pmatrix} M & M_{0\overline{0}} \\ M_{0\overline{0}}^* & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{0\overline{0}} \\ \Gamma_{0\overline{0}}^* & \Gamma \end{pmatrix}\right) \begin{pmatrix} |K^0(0)\rangle \\ |\bar{K}^0(0)\rangle \end{pmatrix} (1)
$$

$$
M_{0\bar{0}} = \mathcal{P} \sum_{n} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}}, \qquad (2)
$$

$$
\Gamma_{0\bar{0}} = 2\pi \langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle \delta(m_{K} - E_{n}) \tag{3}
$$

Definition of ΔM_K and ε_K

$$
\Delta M_K = 2 \text{ Re } M_{0\bar{0}}, \tag{4}
$$
\n
$$
\text{Im } M_{\bar{0}0} \quad \text{Im } M_0 \qquad \text{for all } \quad 2 \Delta M_K \qquad \text{for all } \quad 42 \text{ K.}
$$

$$
\varepsilon_K = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{-\operatorname{Im} M_{\bar{0}0}}{\Delta M_K} + \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right), \phi_{\epsilon} = \tan^{-1} \left(\frac{2\Delta M_K}{\Gamma_S - \Gamma_L} \right) = 43.51(5)^{\circ}.
$$
\n⁽⁵⁾

The $\Delta S = 2$ process can be treated using an effective Hamiltonian, which is the product of a Wilson coefficient and a local $\Delta S = 2$ operator O_{LL} :

$$
O_{LL} = (\bar{s}d)_{V-A} (\bar{s}d)_{V-A}.
$$
\n⁽⁶⁾

Two weak vertices contribute a factor:

$$
\lambda_i = V_{id} V_{is}^*,\tag{7}
$$

where $V_{qq'}$ is a CKM matrix element and i stands for three internal up-type quarks: $i = u, c, t$. The unitary property of CKM matrix ensures the orthogonality of its first and second columns:

$$
\lambda_u + \lambda_c + \lambda_t = 0 \tag{8}
$$

Eliminating the factor λ_c , the modified effective Hamiltonian and the relation between new correction parameters η'_i and conventional ones η_i are shown as follows:

$$
H_W^{\Delta S=2} = \frac{G_F^2}{16\pi^2} M_W^2 \left[\lambda_u^2 \eta_1' S_0(0, 0, x_c) + \lambda_t^2 \eta_2' S_0(x_t, x_t, x_c) + 2\lambda_u \lambda_t \eta_3' S_0(x_t, 0, x_c) \right] O_{LL} + \text{h.c.}
$$

- λ_u^2 term has no imaginary part, main content for ΔM_k lattice calculation
- λ_t^2 term can be treated by perturbation theory
- $\bullet \lambda_u \lambda_t$ term is then the objective of the ε_K lattice calculation, specifically $c(u - c)$ part.

Calculate a bi-local product of two local $\Delta S = 1$ operators: $\langle \overline{K}^0 | T \left\{ H_W^{\Delta S=1}(x) H_W^{\Delta S=1}(y) \right\} | K^0 \rangle.$

Figure 1: Example of Bi-local Structure Calculated on Lattice

Single Integrated Correlation Function on Lattice

We integrate the product of two $H_W^{\Delta S=1}$ over a time interval $[t-T,t+T]$:

$$
\mathcal{A}^{s}(T) = \frac{1}{2} \sum_{t_2=t_a}^{t_b} \sum_{t_1=t+T}^{t-T} \langle 0|T \left\{ \overline{K^0}(t_f) H_W(t_1) H_W(t) \overline{K^0}(t_i) \right\} |0\rangle.
$$
 (10)

inserting intermediate states:

$$
\mathcal{A}^s = N_K^2 e^{-M_K(t_f - t_i)} \left\{ \sum_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n} \left(-1 + e^{(M_K - E_n)(T+1)} \right) \right\}, \tag{11}
$$

Intermediate states $|n\rangle = |0\rangle, |\pi\rangle, |\pi\pi\rangle, |\eta\rangle$ which have $E_n < M_K$ or $E_n \simeq M_K$ will contribute exponentially increasing terms.

For $|0\rangle$ and $|\eta\rangle$, we add two operators $c_s\bar{s}d$ and $c_n\bar{s}\gamma_5d$ to Hamiltonian to subtract their contribution:

$$
\langle 0|H_W - c_p \overline{s} \gamma_5 d|K^0 \rangle = 0, \langle \eta|H_W - c_s \overline{s} d|K^0 \rangle = 0 \tag{12}
$$

For $|\pi\rangle$ and $|\pi\pi\rangle$, we calculate correlation functions $\langle \overline K^0|H_W|n\rangle\langle n|H_W|K^0\rangle$ and subtract them. QQ

The effective weak Hamiltonian H_W for ΔM_K

$$
H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{q's}^* V_{qd} \left(C_1 Q_1^{q' \bar{q}} + C_1 Q_2^{q' \bar{q}} \right)
$$
(13)

where the $Q^{qq'}_{1}$ $_1^{qq'}$ and $Q_2^{qq'}$ $\frac{qq}{2}$ are current-current operators:

$$
Q_1^{q'\overline{q}} = (\overline{s}_a q_b')_{V-A} (\overline{q}_b d_a)_{V-A},\tag{14}
$$

$$
Q_2^{q'\overline{q}} = (\overline{s}_a q'_a)_{V-A} (\overline{q}_b d_b)_{V-A}.
$$
\n(15)

We also add another two operators $c_{s,i} \bar{s}d$ and $c_{p,i} \bar{s} \gamma_5d$ to remove unphysical contributions:

$$
\langle 0|Q_i - c_{p,i}\overline{s}\gamma_5 d|K^0\rangle = 0, \langle \eta|Q_i - c_{s,i}\overline{s}d|K^0\rangle = 0
$$
\n(16)

$$
Q_i' = Q_i - c_{s,i}\overline{s}d - c_{p,i}\overline{s}\gamma_5d\tag{17}
$$

 Ω

The effective weak Hamiltonian H_W for ε_K

$$
H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} \left(\sum_{q,q'=u,c} V_{q's}^* V_{qd} \sum_{i=1,2} C_i Q_i^{q'\bar{q}} - \lambda_t \sum_{i=3}^6 C_i Q_i \right) \tag{18}
$$

where the $Q_1^{qq^\prime}$ $_1^{qq'}$ and $Q_2^{qq'}$ \mathbb{R}^{qq}_2 are current-current operators and $Q_i, 3 \leq i \leq 6$ are QCD penguin operators:

$$
Q_1^{q' \overline{q}} = (\overline{s}_a q_b')_{V-A} (\overline{q}_b d_a)_{V-A},\tag{19}
$$

$$
Q_2^{q' \overline{q}} = (\overline{s}_a q'_a)_{V-A} (\overline{q}_b d_b)_{V-A},
$$
\n(20)

$$
Q_3 = (\bar{s}_a d_a)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_b)_{V-A},
$$
\n(21)

$$
Q_4 = (\bar{s}_a d_b)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_a)_{V-A},
$$
\n(22)

$$
Q_5 = (\bar{s}_a d_a)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_b)_{V+A},
$$
\n(23)

$$
Q_6 = (\bar{s}_a d_b)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_a)_{V+A}.
$$
 (24)

Yikai Huo RBC-UKQCD Collaborations [Enhanced Lattice Studies on](#page-0-0) ε_K and ΔM_K August 2nd, 2024 11 / 18

Four-point Diagrams

Figure 2: Type-1,2,3 and 4 Diagrams for ΔM_K and ε_K . For ΔM_K , inner quark lines only involve $u - c$ and $(V - A)$ structure. For ε_K , inner quark lines have more combinations of flavors and vertexes

 Ω

Four-point Diagrams

Figure 3: Type-5 4-point diagrams, ε_K only. A current-current operator at one vertex, the other from a penguin operator $(\bar{s}d)_{V-A}(\bar{d}d)_{V+A}$ or $(\bar{s}d)_{V-A}(\bar{s}s)_{V+A}$.

Divergence occurs when two operators coincide with each other.

• GIM mechanism in inner quark lines of ΔM_K removes both quadratic and logarithmic divergences

$$
\int d^4p\gamma^{\mu}(1-\gamma^5)(\frac{\rlap{\,/}{p}-m_c}{p^2+m_c^2}-\frac{\rlap{\,/}{p}-m_u}{p^2+m_u^2})\gamma^{\nu}(1-\gamma^5)(\frac{\rlap{\,/}{p}-m_c}{p^2+m_c^2})
$$
\n
$$
=\int d^4p\gamma^{\mu}(1-\gamma^5)\frac{\rlap{\,/}{p}(m_u^2-m_c^2)}{(p^2+m_u^2)(p^2+m_c^2)}\gamma^{\nu}(1-\gamma^5)(\frac{\rlap{\,/}{p}(m_u^2-m_c^2)}{p^2+m_c^2})\tag{25}
$$

• For $\varepsilon_K(\text{LD})$, a logarithmic divergence occurs when two operators coincide with each other

$$
\int d^4p\gamma^{\mu}(1-\gamma^5)(\frac{\rlap{\,/}{p}-m_c}{p^2+m_c^2} - \frac{\rlap{\,/}{p}-m_u}{p^2+m_u^2})\gamma^{\nu}(1-\gamma^5)(\frac{\rlap{\,/}{p}-m_c}{p^2+m_c^2})
$$
\n
$$
= \int d^4p\gamma^{\mu}(1-\gamma^5)\frac{\rlap{\,/}{p}(m_u^2-m_c^2)}{(p^2+m_u^2)(p^2+m_c^2)}\gamma^{\nu}(1-\gamma^5)(\frac{\rlap{\,/}{p}-m_c^2}{p^2+m_c^2})
$$
\n(26)

This short-distance divergence can be removed by adding a counter term which is the product of a coefficient and the local operator O_{LL} . Currently, the explicit form has been calculated in the $\overline{\text{MS}}$ scheme

$$
\mathcal{H}_{W,ut}^{\Delta S=2} = \frac{G_F^2}{2} \lambda_u \lambda_t \sum_{i=1,2} \left\{ \sum_{j=1,6} \int d^4x C_i^{\overline{\text{MS}}} C_j^{\overline{\text{MS}}} [[\tilde{Q}_i^{\overline{\text{MS}}} (x) \tilde{Q}_j^{\overline{\text{MS}}} (0)]]^{\overline{\text{MS}}} + C_{7i}^{\overline{\text{MS}}} O_{LL}^{\overline{\text{MS}}} (0) \right\} \tag{27}
$$

- In a lattice calculation, this short-distance correction is usually implemented by the regularization-independent(RI/SMOM) method
- We need to bridge the regularization-independent scheme with the MS scheme to obtain the appropriate value.

Renormalized Matrix Elements of ε_K

The final form of the matrix elements calculated on lattice is shown as follows:

$$
\mathcal{H}_{W,ut}^{\Delta S=2} = \frac{G_F^2}{2} \lambda_u \lambda_t \sum_{i=1}^2 \left\{ \sum_{j=1}^6 C_i^{\text{Lat}} C_j^{\text{Lat}} \left(\sum_x [[\tilde{Q}_i^{\text{Lat}}(x) \tilde{Q}_j^{\text{Lat}}(0)]]^{\text{Lat}} - X_{ij}^{\text{Lat}}(\mu_{\text{RI}}) O_{LL}^{\text{Lat}}(0) \right) \right. \\
\left. + \left(\sum_{j=1}^6 C_i^{\overline{\text{MS}}} C_j^{\overline{\text{MS}}} \Delta Y_{ij}^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}, \mu_{\text{RI}}) \right) Z_{LL}^{\text{Lat}\to\overline{\text{MS}}} O_{LL}^{\text{Lat}}(0) \\
+ \left(C_{7i}^{\overline{\text{MS}}} + \sum_{j=1}^6 C_i^{\overline{\text{MS}}} C_j^{\overline{\text{MS}}} Y_{ij}^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}, 0) \right) Z_{LL}^{\text{Lat}\to\overline{\text{MS}}} O_{LL}^{\text{Lat}}(0) \right\}.
$$
 (28)

- The first term removes the divergence from lattice calculation by imposing a RI/SMOM condition.
- The second line stands for matching between the energy scales in the MS scheme.
- The last line stands for the counter term established in the MS scheme and the NNLO matching term from the MS scheme [to](#page-14-0) [th](#page-16-0)[e](#page-14-0) [R](#page-15-0)[I/](#page-16-0)[S](#page-6-0)[MO](#page-17-0)[M](#page-7-0) [sc](#page-17-0)[he](#page-0-0)[me](#page-17-0). QQ
- Correct finite volume effect of low-energy two-pion intermediate states. "Effects of finite volume on the $K_L - K_S$ mass difference", N. H. Christ, X. Feng, G. Martinelli, and C. T. Sachrajda, Phys. Rev. D, 91(2015), 114510
- More precisely dealing with $\pi\pi$ state, multiple-state fit or GEVP. (We follow the method in " Δ I=3/2 and Δ I=1/2 channels of K $\rightarrow \pi\pi$ decay at the physical point with periodic boundary conditions," T. Blum,P. Boyle, D. Hoying, T. Izubuchi, L. Jin, C. JungC. Kelly, C. Lehner, A. Soni, Amarjit and M. Tomii, PhysRevD.108(2023).094517).
- \bullet Sample all-mode averaging(AMA) method: calculate exact and sloppy propagators with different precision to reduce the computational cost.

 Ω

Lattice Resources

- Calculations performed on two sets of configurations with physical quark mass
- Frontier: 9,408 nodes, Each Node: 64-core CPU+8GPUs
	- 50k node hours for 64I: 40 exact and 120 sloppy calculation
	- 400k node hours for 96I: 20 exact and 60 sloppy calculation
- \bullet Grid: $C++$ library harnessing the matrix computation potential of the GPU

Table 1: Dynamical 2+1 flavor domain wall fermion lattices to be used in our calculation, MDWF = Mobius domain wall fermions, $I = I$ wasaki gauge action.