Enhanced Lattice Studies on ε_K and ΔM_K

Yikai Huo RBC-UKQCD Collaborations

August 2nd, 2024

Yikai Huo RBC-UKQCD Collaborations Enhanced Lattice Studies on ε_K and ΔM_K

August 2nd, 2024

Theoretical Background 2

æ

- Weak interaction is least understood section in Standard Model. The weak interaction naturally enables CP violation.
- Kaon is the lightest meson which contains a strange quark. ΔM_K is a very good candidate to test the validity of the Standard Model.
- Analytical methods focus on short distance part of ε_K . A more precise calculation of the long-distance part, $\varepsilon_K(LD)$, is necessary.
- Both ΔM_K and ε_K (LD) are highly non-perturbative, good candidates for lattice calculation, having some overlap in calculation.

RBC-UKQCD collaboration has obtained a ΔM_K result with physical quark masses and long-distance contribution to ε_K with unphysical quark masses.

- "Long-distance contribution to ε_K from lattice QCD", Z. Bai, N. H. Christ, J. M. Karpie, C. T. Sachrajda, A. Soni, B. Wang, *Phys.Rev.D* 109 (2024) 5, 054501
- "Lattice calculation of the mass difference between the long- and short-lived K mesons for physical quark masses" Bigeng Wang, *Lattice 2021*

Kaon Mixing

Neutral Kaon Mixing

$$i\frac{d}{dt} \left(\begin{array}{c} |K^{0}(t)\rangle \\ |\bar{K}^{0}(t)\rangle \end{array} \right) = \left(\left(\begin{array}{cc} M & M_{0\bar{0}} \\ M_{0\bar{0}}^{*} & M \end{array} \right) - \frac{i}{2} \left(\begin{array}{c} \Gamma & \Gamma_{0\bar{0}} \\ \Gamma_{0\bar{0}}^{*} & \Gamma \end{array} \right) \right) \left(\begin{array}{c} |K^{0}(0)\rangle \\ |\bar{K}^{0}(0)\rangle \end{array} \right)$$
(1)

$$M_{0\bar{0}} = \mathcal{P}\sum_{n} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}}, \qquad (2)$$

$$\Gamma_{0\bar{0}} = 2\pi \langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle \delta(m_K - E_n)$$
(3)

Definition of ΔM_K and ε_K

$$\Delta M_K = 2 \operatorname{Re} M_{0\bar{0}},\tag{4}$$

$$\varepsilon_K = e^{i\phi_\epsilon} \sin\phi_\epsilon \left(\frac{-\operatorname{Im} M_{\bar{0}0}}{\Delta M_K} + \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right), \phi_\epsilon = \tan^{-1} \left(\frac{2\Delta M_K}{\Gamma_S - \Gamma_L}\right) = 43.51(5)^\circ.$$
(5)

The $\Delta S = 2$ process can be treated using an effective Hamiltonian, which is the product of a Wilson coefficient and a local $\Delta S = 2$ operator O_{LL} :

$$O_{LL} = (\bar{s}d)_{V-A} (\bar{s}d)_{V-A} \,. \tag{6}$$

Two weak vertices contribute a factor:

$$\lambda_i = V_{id} V_{is}^*,\tag{7}$$

where $V_{qq'}$ is a CKM matrix element and *i* stands for three internal up-type quarks: i = u, c, t. The unitary property of CKM matrix ensures the orthogonality of its first and second columns:

$$\lambda_u + \lambda_c + \lambda_t = 0 \tag{8}$$

Eliminating the factor λ_c , the modified effective Hamiltonian and the relation between new correction parameters η'_i and conventional ones η_i are shown as follows:

$$H_W^{\Delta S=2} = \frac{G_F^2}{16\pi^2} M_W^2 \left[\lambda_u^2 \eta_1' S_0(0,0,x_c) + \lambda_t^2 \eta_2' S_0(x_t,x_t,x_c) + 2\lambda_u \lambda_t \eta_3' S_0(x_t,0,x_c) \right] O_{LL} + \text{h.c.}$$

- λ_u^2 term has no imaginary part, main content for ΔM_k lattice calculation
- λ_t^2 term can be treated by perturbation theory
- $\lambda_u \lambda_t$ term is then the objective of the ε_K lattice calculation, specifically c(u-c) part.

Calculate a bi-local product of two local $\Delta S = 1$ operators: $\langle \overline{K}^0 | T \left\{ H_W^{\Delta S=1}(x) H_W^{\Delta S=1}(y) \right\} | K^0 \rangle.$

Figure 1: Example of Bi-local Structure Calculated on Lattice

Single Integrated Correlation Function on Lattice

We integrate the product of two $H_W^{\Delta S=1}$ over a time interval [t-T,t+T]:

$$\mathcal{A}^{s}(T) = \frac{1}{2} \sum_{t_{2}=t_{a}}^{t_{b}} \sum_{t_{1}=t+T}^{t-T} \langle 0|T\left\{\overline{K^{0}}(t_{f})H_{W}(t_{1})H_{W}(t)\overline{K^{0}}(t_{i})\right\}|0\rangle.$$
(10)

inserting intermediate states:

$$\mathcal{A}^{s} = N_{K}^{2} e^{-M_{K}(t_{f}-t_{i})} \left\{ \sum_{n} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | \overline{K}^{0} \rangle}{M_{K} - E_{n}} \left(-1 + e^{(M_{K} - E_{n})(T+1)} \right) \right\}, \quad (11)$$

Intermediate states $|n\rangle = |0\rangle, |\pi\rangle, |\pi\pi\rangle, |\eta\rangle$ which have $E_n < M_K$ or $E_n \simeq M_K$ will contribute exponentially increasing terms.

For $|0\rangle$ and $|\eta\rangle$, we add two operators $c_s \overline{s}d$ and $c_p \overline{s}\gamma_5 d$ to Hamiltonian to subtract their contribution:

$$\langle 0|H_W - c_p \overline{s}\gamma_5 d|K^0 \rangle = 0, \langle \eta|H_W - c_s \overline{s}d|K^0 \rangle = 0$$
(12)

For $|\pi\rangle$ and $|\pi\pi\rangle$, we calculate correlation functions $\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle$ and subtract them.

The effective weak Hamiltonian H_W for ΔM_K

$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{q's}^* V_{qd} \left(C_1 Q_1^{q'\bar{q}} + C_1 Q_2^{q'\bar{q}} \right)$$
(13)

where the $Q_1^{qq^\prime}$ and $Q_2^{qq^\prime}$ are current-current operators:

$$Q_1^{q'\bar{q}} = (\bar{s}_a q'_b)_{V-A} (\bar{q}_b d_a)_{V-A}, \tag{14}$$

$$Q_2^{q'\bar{q}} = (\bar{s}_a q'_a)_{V-A} (\bar{q}_b d_b)_{V-A}.$$
(15)

We also add another two operators $c_{s,i}\overline{s}d$ and $c_{p,i}\overline{s}\gamma_5d$ to remove unphysical contributions:

$$Q_i' = Q_i - c_{s,i}\overline{s}d - c_{p,i}\overline{s}\gamma_5d \tag{17}$$

10 / 18

The effective weak Hamiltonian H_W for ε_K

$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} \left(\sum_{q,q'=u,c} V_{q's}^* V_{qd} \sum_{i=1,2} C_i Q_i^{q'\bar{q}} - \lambda_t \sum_{i=3}^6 C_i Q_i \right)$$
(18)

where the $Q_1^{qq'}$ and $Q_2^{qq'}$ are current-current operators and $Q_i, 3 \le i \le 6$ are QCD penguin operators:

$$Q_1^{q'\bar{q}} = (\bar{s}_a q'_b)_{V-A} (\bar{q}_b d_a)_{V-A}, \tag{19}$$

$$Q_2^{q'\bar{q}} = (\bar{s}_a q_a')_{V-A} (\bar{q}_b d_b)_{V-A}, \tag{20}$$

$$Q_3 = (\bar{s}_a d_a)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_b)_{V-A},$$
(21)

$$Q_4 = (\bar{s}_a d_b)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_a)_{V-A},$$
(22)

$$Q_5 = (\bar{s}_a d_a)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_b)_{V+A},$$
(23)

$$Q_6 = (\bar{s}_a d_b)_{V-A} \sum_{q=u,d,s,c} (\bar{q}_b q_a)_{V+A}.$$
 (24)

Yikai Huo RBC-UKQCD Collaborations Enhanced Lattice Studies on ε_K and ΔM_K August 2nd, 2024 11/18

Four-point Diagrams

Figure 2: Type-1,2,3 and 4 Diagrams for ΔM_K and ε_K . For ΔM_K , inner quark lines only involve u - c and (V - A) structure. For ε_K , inner quark lines have more combinations of flavors and vertexes

Four-point Diagrams

Figure 3: Type-5 4-point diagrams, ε_K only. A current-current operator at one vertex, the other from a penguin operator $(\overline{s}d)_{V-A}(\overline{d}d)_{V\pm A}$ or $(\overline{s}d)_{V-A}(\overline{s}s)_{V\pm A}$.

Divergence occurs when two operators coincide with each other.

 $\bullet~{\rm GIM}$ mechanism in inner quark lines of ΔM_K removes both quadratic and logarithmic divergences

• For $\varepsilon_K(LD)$, a logarithmic divergence occurs when two operators coincide with each other

$$\int d^4 p \gamma^{\mu} (1 - \gamma^5) (\frac{\not p - m_c}{p^2 + m_c^2} - \frac{\not p - m_u}{p^2 + m_u^2}) \gamma^{\nu} (1 - \gamma^5) (\frac{\not p - m_c}{p^2 + m_c^2})$$
$$= \int d^4 p \gamma^{\mu} (1 - \gamma^5) \frac{\not p (m_u^2 - m_c^2)}{(p^2 + m_u^2)(p^2 + m_c^2)} \gamma^{\nu} (1 - \gamma^5) (\frac{\not p}{p^2 + m_c^2})$$
(26)

• This short-distance divergence can be removed by adding a counter term which is the product of a coefficient and the local operator O_{LL} . Currently, the explicit form has been calculated in the $\overline{\mathrm{MS}}$ scheme

$$\mathcal{H}_{W,ut}^{\Delta S=2} = \frac{G_F^2}{2} \lambda_u \lambda_t \sum_{i=1,2} \left\{ \sum_{j=1,6} \int d^4 x C_i^{\overline{\mathrm{MS}}} C_j^{\overline{\mathrm{MS}}} [[\widetilde{Q}_i^{\overline{\mathrm{MS}}}(x) \widetilde{Q}_j^{\overline{\mathrm{MS}}}(0)]]^{\overline{\mathrm{MS}}} + C_{7i}^{\overline{\mathrm{MS}}} O_{LL}^{\overline{\mathrm{MS}}}(0) \right\}$$
(27)

- In a lattice calculation, this short-distance correction is usually implemented by the regularization-independent(RI/SMOM) method
- We need to bridge the regularization-independent scheme with the $\overline{\rm MS}$ scheme to obtain the appropriate value.

Renormalized Matrix Elements of ε_K

The final form of the matrix elements calculated on lattice is shown as follows:

$$\mathcal{H}_{W,ut}^{\Delta S=2} = \frac{G_F^2}{2} \lambda_u \lambda_t \sum_{i=1}^2 \left\{ \sum_{j=1}^6 C_i^{\text{Lat}} C_j^{\text{Lat}} \left(\sum_x [[\tilde{Q}_i^{\text{Lat}}(x) \tilde{Q}_j^{\text{Lat}}(0)]]^{\text{Lat}} - X_{ij}^{\text{Lat}}(\mu_{\text{RI}}) O_{LL}^{\text{Lat}}(0) \right) + \left(\sum_{j=1}^6 C_i^{\overline{\text{MS}}} C_j^{\overline{\text{MS}}} \Delta Y_{ij}^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}, \mu_{\text{RI}}) \right) Z_{LL}^{\text{Lat} \to \overline{\text{MS}}} O_{LL}^{\text{Lat}}(0) + \left(C_{7i}^{\overline{\text{MS}}} + \sum_{j=1}^6 C_i^{\overline{\text{MS}}} C_j^{\overline{\text{MS}}} Y_{ij}^{\overline{\text{MS}}}(\mu_{\overline{\text{MS}}}, 0) \right) Z_{LL}^{\text{Lat} \to \overline{\text{MS}}} O_{LL}^{\text{Lat}}(0) \right\}.$$
(28)

- The first term removes the divergence from lattice calculation by imposing a RI/SMOM condition.
- $\bullet\,$ The second line stands for matching between the energy scales in the $\overline{\rm MS}$ scheme.
- The last line stands for the counter term established in the $\overline{\rm MS}$ scheme and the NNLO matching term from the $\overline{\rm MS}$ scheme to the RI/SMOM scheme.

August 2nd, 2024

- Correct finite volume effect of low-energy two-pion intermediate states.
 "Effects of finite volume on the K_L K_S mass difference",
 N. H. Christ, X. Feng, G. Martinelli, and C. T. Sachrajda, *Phys. Rev. D*, 91(2015), 114510
- More precisely dealing with ππ state, multiple-state fit or GEVP. (We follow the method in "ΔI=3/2 and ΔI=1/2 channels of K→ππ decay at the physical point with periodic boundary conditions," T. Blum,P. Boyle, D. Hoying, T. Izubuchi, L. Jin, C. JungC. Kelly, C. Lehner, A. Soni, Amarjit and M. Tomii, *PhysRevD*.108(2023).094517).
- Sample all-mode averaging(AMA) method: calculate exact and sloppy propagators with different precision to reduce the computational cost.

- Calculations performed on two sets of configurations with physical quark mass
- Frontier: 9,408 nodes, Each Node: 64-core CPU+8GPUs
 - 50k node hours for 64I: 40 exact and 120 sloppy calculation
 - 400k node hours for 961: 20 exact and 60 sloppy calculation
- Grid: C++ library harnessing the matrix computation potential of the GPU

Name	Action	$a^{-1}(\text{GeV})$	Volume	$m_{\pi}({ m MeV})$	$Size(\mathrm{fm})$
64I	MDWF+I	2.359(7)	$64^3 \times 128 \times 12$	139	5.4
961	MDWF+I	2.708	$96^3 \times 192 \times 12$	140	6.9

Table 1: Dynamical 2+1 flavor domain wall fermion lattices to be used in our calculation, MDWF = Mobius domain wall fermions, I = Iwasaki gauge action.