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(1)More lattice spectra.

(2)Subsystem of multibody 

system

In a multibody system, each subsystem

should possess momentum. Therefore,

the formalism in the finite volume of a

moving system is crucial.

For example, 3-body system in the 

rest frame, any 2-body should 

have the momentum.
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Quantization 

Condition 𝒒 is the on-shell 
three-momentum of 𝑬∗
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𝒂∗, 𝒃∗ are independent on 𝑬∗!
The boosted potential is still energy independent.

The eigenvectors form a complete orthonormal basis of

the Hilbert space of the Hamiltonian.

New one, it has some benefits!

Both particles are  on-shell.
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Summary

• We explore the general formalism of momentum transformation in a finite volume.

• We discuss three different transformation methods, two of which have been investigated 

in previous studies. The third method is a novel approach that offers advantages for the 

Hamiltonian method and the study of three-body systems. All three methods are 

consistent within errors of O(𝒆−𝒎𝑳).

• Finally, we provide a comparison of the finite volume spectrum between the Hamiltonian 

and KSS methods based on the same phase shift of 𝝅𝝅 scattering for S-wave interactions.
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Quantization 

Condition 


