

Generalized boost transformations in finite volumes and application to Hamiltonian methods

Jia-Jun Wu (UCAS) Collaborators: Yan Li, T.-S. Harry Lee, Ross D. Young

arXiv: 2404.16702 (JHEP)

Lattice2024 2

2024.8.2 Liverpool, UK

Outline

- Motivation for moving frame
- QC in the moving-frame finite volume
- Three-momentum transformation
- How to apply in HEFT
- The test in S-wave of $\pi\pi$ scattering
- Summary

Motivation for moving frame

Motivation for moving frame

中国科学

University of Chinese Academy of Science

Hadron Spectrum Collaboration PRD 87 (2013) 3, 034505

Motivation for moving frame

(1) More lattice spectra.

Hadron Spectrum Collaboration PRD 87 (2013) 3, 034505

Motivation

In a multibody system, each subsystem should possess momentum. Therefore, the formalism in the finite volume of a moving system is crucial.

For example, 3-body system in the rest frame, any 2-body should have the momentum.

(1) More lattice spectra.(2) Subsystem of multibody system

QC in the finite volume of rest frame

$$T = V + VG_2T,$$

 $\left(+ \right) V \left(G_2 \right)$

T

$$T^L = V + V G_2^B T^L \,,$$

$$^{L} = T + TG_{2}^{L}T^{L}, \quad G_{2}^{L} \equiv G_{2}^{B} - G_{2}.$$

QC in the finite volume of rest frame

$$T^{L} = T + T G_{2}^{L} T^{L}$$

 \mathbf{N}

Lüscher, Commun.Math. 05, 153 (1986). achrajda and 27 218 (2005) Meissner, Oset, КY 7 139 (2011)

$$T^{L} = T + TG_{2}^{L}T^{L}, \quad G_{2}^{L} \equiv G_{2}^{B} - G_{2}$$

$$T^{L}(\mathbf{p}_{f}^{*}, \mathbf{p}_{i}^{*}; E^{*}) = T(\mathbf{p}_{f}^{*}, \mathbf{p}_{i}^{*}; E^{*}) + i\left(\frac{1}{L^{3}}\sum_{\mathbf{k}^{*}} -\int \frac{d^{3}k^{*}}{(2\pi)^{3}}\right) \frac{T(\mathbf{p}_{f}^{*}, \mathbf{k}^{*}; E^{*})}{4\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})} \frac{T^{L}(\mathbf{k}^{*}, \mathbf{p}_{i}^{*}; E^{*})}{E^{*} - \omega_{1}(\mathbf{k}^{*}) - \omega_{2}(\mathbf{k}^{*}) + i\epsilon}$$
After PW
Quantization
$$[T^{L}(E^{*})] = \left([T(E^{*})]^{-1} - [F(E^{*})]\right)^{-1}_{[F(E^{*})]_{lm,l'm'}} = \left(\frac{1}{L^{3}}\sum_{\mathbf{k}^{*}} -\int \frac{d^{3}k}{(2\pi)^{3}}\right) \frac{i}{4\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})} \frac{Y_{lm}(\hat{k}^{*})Y_{lm'}^{*}(\hat{k}^{*})\left(\frac{|\mathbf{k}^{*}|}{q}\right)^{l+l'}}{Condition}$$
8

University of Chinese Academy of Sciences

中国科学

R

QC in the finite volume of moving frame

$$\int \frac{d^3k^*}{(2\pi)^3} \to \int \frac{d^3k^r}{(2\pi)^3} \mathcal{J}^r \to \frac{1}{L^3} \sum_{\mathbf{k}^r} \mathcal{J}^r \qquad \left(\frac{1}{L^3} \sum_{\mathbf{k}^*} -\int \frac{d^3k^*}{(2\pi)^3}\right) \to \left(\frac{1}{L^3} \sum_{\mathbf{k}^r} -\int \frac{d^3k^r}{(2\pi)^3}\right) \mathcal{J}^r$$

$$T^{r,L}(\mathbf{p}_{f}^{*},\mathbf{p}_{i}^{*};E^{*}) = T(\mathbf{p}_{f}^{*},\mathbf{p}_{i}^{*};E^{*}) + i\left(\frac{1}{L^{3}}\sum_{\mathbf{k}^{r}} -\int \frac{d^{3}k^{r}}{(2\pi)^{3}}\right)\mathcal{J}^{r}\frac{T(\mathbf{p}_{f}^{*},\mathbf{k}^{*};E^{*})}{4\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})}\frac{T^{r,L}(\mathbf{k}^{*},\mathbf{p}_{i}^{*};E^{*})}{E^{*}-\omega_{1}(\mathbf{k}^{*})-\omega_{2}(\mathbf{k}^{*})+i\epsilon}$$
Quantization $[T^{r,L}(E^{*};\mathbf{P})] = \left([T(E^{*})]^{-1} - [F(E^{*};\mathbf{P})]\right)^{-1}$

中国科学院大学

University of Chinese Academy

Quantization Condition

 \boldsymbol{q} is the on-shell three-momentum of E^*

$$\det\left(\left[\cot\delta(q)\right] + \left[M(q;\mathbf{P})\right]\right) = 0\,,$$

$$[M(q;\mathbf{P})]_{lm,l'm'} = \frac{16\pi^2}{q} \left(\frac{1}{L^3} \sum_{\mathbf{k}} -\mathcal{P} \int \frac{d^3k^r}{(2\pi)^3} \right) \mathcal{J}^r \frac{Y_{lm}(\hat{\mathbf{k}}^*)Y_{l'm'}^*(\hat{\mathbf{k}}^*) \left(\frac{|\mathbf{k}^*|}{q}\right)^{l+l'}}{q^2 - k^{*2}} \mathbf{q}^2 - k^{*2} \mathbf{q}^2 - k^{*$$

Three-momentum transformation

 $\int \frac{d^3 k^*}{(2\pi)^3} \to \int \frac{d^3 k^r}{(2\pi)^3} \mathcal{J}^r \to \frac{1}{L^3} \sum_{\mathbf{k}^r} \mathcal{J}^r \qquad \text{The relation } \vec{k}^r \& \vec{k}^* ???$

$$\begin{split} \mathbf{k}^r &= (k_{\parallel}^r, \mathbf{k}_{\perp}^r) = (\gamma \,\beta \,b^* + \gamma \,k_{\parallel}^*, \mathbf{k}_{\perp}^*) \equiv \mathcal{A} \,\mathbf{k}_{\parallel}^* + \mathcal{B} \,\mathbf{P} + \mathbf{k}_{\perp}^* \,, \\ \beta &= \frac{|\mathbf{P}|}{\sqrt{a^{*\,2} + \mathbf{P}^2}} \,, \qquad \mathcal{A} = \gamma = \frac{\sqrt{a^{*\,2} + \mathbf{P}^2}}{a^*} \,, \qquad \mathcal{B} = \frac{b^*}{a^*} \,. \end{split}$$

Three-momentum transformation $\int \frac{d^3k^*}{(2\pi)^3} \to \int \frac{d^3k^r}{(2\pi)^3} \mathcal{J}^r \to \frac{1}{L^3} \sum_{k=1}^{r} \mathcal{J}^r$ The relation $\vec{k}^r \& \vec{k}^*$??? Moving Frame (E, \vec{P}) Rest Frame $(E^*, \vec{0})$ \rightarrow $\vec{k}_1 = \vec{k}^r$ \rightarrow $\vec{k}_1 = \vec{k}^*$ Failed to fix the relation Because of off-shell $\rightarrow \vec{k}_2 = \vec{P} - \vec{k}^r$ $\vec{k}_2 = -\vec{k}^*$ $\left(\frac{1}{L^3}\sum_{\mathbf{k}r} -\int \frac{d^3k^r}{(2\pi)^3}\right) \rightarrow \frac{\text{Singularity term} +}{O(e^{-mL})}$ $\mathbf{k}^{r} = (k_{\parallel}^{r}, \mathbf{k}_{\perp}^{r}) = (\gamma \beta b^{*} + \gamma k_{\parallel}^{*}, \mathbf{k}_{\perp}^{*}) \equiv \mathcal{A} \mathbf{k}_{\parallel}^{*} + \mathcal{B} \mathbf{P} + \mathbf{k}_{\perp}^{*},$ $\beta = \frac{|\mathbf{P}|}{\sqrt{a^{*2} + \mathbf{P}^2}}, \qquad \mathcal{A} = \gamma = \frac{\sqrt{a^{*2} + \mathbf{P}^2}}{a^{*}}, \qquad \mathcal{B} = \frac{b^{*}}{a^{*}}.$ two particles are both on-shell, $a^* = E^*(q) \text{ or } \omega_1(\mathbf{k}^*) + \omega_2(\mathbf{k}^*),$ $a^* = E^*$ and $b^* = \omega_1$ $b^* = \omega_1(q) \text{ or } \omega_1(\mathbf{k}^*).$ 13 中国科学院大学

Kim, Sachrajda and Sharpe NPB 727 218 (2005) r = KSS

$$\begin{aligned} a^* &= E^*(q) \,, \quad b^* = \omega_1(\mathbf{k}^*) \,, \quad \mathcal{J}^r = \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k}^r)} \\ \mathbf{k}^r &= \frac{E(q)}{E^*(q)} \mathbf{k}^*_{\parallel} + \frac{\omega_1(\mathbf{k}^*)}{E^*(q)} \mathbf{P} + \mathbf{k}^*_{\perp} \,, \\ \mathbf{k}^* &= \frac{E(q)}{E^*(q)} \mathbf{k}^r_{\parallel} - \frac{\omega_1(\mathbf{k}^r)}{E^*(q)} \mathbf{P} + \mathbf{k}^r_{\perp} \end{aligned}$$

The first particle is always on-shell, while second one is not.

$$\begin{split} \bar{M}_{00}^{\mathbf{KSS}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k})} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq 0} \int_0^\alpha dt \, e^{tq^2} \int dk^* \, e^{-tk^{*\,2}} \\ &\times \cos\left[L\frac{\omega_1(\mathbf{k}^*)}{E^*(q)}\mathbf{n}\cdot\mathbf{P}\right] \frac{2k^* \sin\left[L \, D_{\mathbf{KSS}} \, k^*\right]}{D_{\mathbf{KSS}}} \,, \\ D_{\mathbf{KSS}} &= \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)}\right)^2} \,. \end{split}$$

 $r = \mathbf{RG}$

Kim, Sachrajda and Sharpe NPB 727 218 (2005) r = KSS

 $a^* = E^*(q), \quad b^* = \frac{E^*(q)}{2} + \frac{m_1^2 - m_2^2}{2E^*(q)} = \omega_1(q), \ \mathcal{J}^r = \frac{E^*(q)}{E(q)}$

 $\mathbf{k}^{r} = \frac{E(q)}{E^{*}(q)}\mathbf{k}_{\parallel}^{*} + \frac{1}{2}\left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)}\right)\mathbf{P} + \mathbf{k}_{\perp}^{*}, \quad \text{The arrangement of energies follows two}$

$$a^* = E^*(q), \quad b^* = \omega_1(\mathbf{k}^*), \quad \mathcal{J}^r = \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k}^*)}$$
$$\mathbf{k}^r = \frac{E(q)}{E^*(q)}\mathbf{k}^*_{\parallel} + \frac{\omega_1(\mathbf{k}^*)}{E^*(q)}\mathbf{P} + \mathbf{k}^*_{\perp},$$
$$\mathbf{k}^* = \frac{E(q)}{E^*(q)}\mathbf{k}^r_{\parallel} - \frac{\omega_1(\mathbf{k}^r)}{E^*(q)}\mathbf{P} + \mathbf{k}^r_{\perp}$$

Rummukainen and Gottlieb NPB 450 397 (1997)

Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky,

Schierholz, and Zanotti PRD 86 094513 (2012)

The first particle is always on-shell, while second one is not.

$$\begin{split} \bar{M}_{00}^{\mathbf{KSS}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k})} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq0} \int_0^\alpha dt \, e^{tq^2} \int dk^* \, e^{-tk^{*\,2}} \\ &\times \cos\left[L\frac{\omega_1(\mathbf{k}^*)}{E^*(q)}\mathbf{n}\cdot\mathbf{P}\right] \frac{2k^* \sin\left[L\,D_{\mathbf{KSS}}\,k^*\right]}{D_{\mathbf{KSS}}}, \\ D_{\mathbf{KSS}} &= \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)}\right)^2}. \end{split}$$

$$\begin{split} \bar{M}_{00}^{\mathbf{RG}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{E^*(q)}{E(q)} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq 0} \cos\left[\frac{L\,\mathbf{n}\cdot\mathbf{P}}{2} \left(1 + \frac{m_1^2 - m_2^2}{E^{*\,2}(q)} \right) \right] \int_0^\alpha dt \, e^{tq^2} \\ &\times \int dk^* \, e^{-tk^{*\,2}} \frac{2k^* \sin\left[L\,D_{\mathbf{RG}}\,k^*\right]}{D_{\mathbf{RG}}} \,, \\ D_{\mathbf{RG}} &= D_{\mathbf{KSS}} = \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)}\right)^2} \,. \end{split}$$

$$\bar{M}_{lm}^{\mathbf{RG}}(q,\,\mathbf{P}) = -\frac{1}{\pi q L} \frac{E^*(q)}{E(q)} \sqrt{4\pi} \mathcal{Z}_{lm}^{\mathbf{\Delta}}(1; \left(\frac{Lq}{2\pi}\right)^2)$$

15

 $\mathbf{k}^* = \frac{E^*(q)}{E(q)} \left(\mathbf{k}_{\parallel}^r - \frac{1}{2} \left(1 + \frac{m_1^2 - m_2^2}{E^{*2}(q)} \right) \mathbf{P} \right) + \mathbf{k}_{\perp}^r \quad \text{particles are both off-shell.}$

Kim, Sachrajda and Sharpe NPB 727 218 (2005) r = KSS

$$a^* = E^*(q), \quad b^* = \omega_1(\mathbf{k}^*), \quad \mathcal{J}^r = \frac{\omega_1(\mathbf{k})}{\omega_1(\mathbf{k})}$$
$$\mathbf{k}^r = \frac{E(q)}{E^*(q)}\mathbf{k}^*_{\parallel} + \frac{\omega_1(\mathbf{k}^*)}{E^*(q)}\mathbf{P} + \mathbf{k}^*_{\perp},$$
$$\mathbf{k}^* = \frac{E(q)}{E^*(q)}\mathbf{k}^r_{\parallel} - \frac{\omega_1(\mathbf{k}^r)}{E^*(q)}\mathbf{P} + \mathbf{k}^r_{\perp}$$

Rummukainen and Gottlieb NPB 450 397 (1997)

Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky,

Schierholz, and Zanotti PRD 86 094513 (2012)

The first particle is always on-shell, while second one is not.

$$\begin{split} \bar{M}_{00}^{\mathbf{KSS}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k})} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq0} \int_0^\alpha dt \, e^{tq^2} \int dk^* \, e^{-tk^{*\,2}} \\ &\times \cos\left[L \frac{\omega_1(\mathbf{k}^*)}{E^*(q)} \mathbf{n} \cdot \mathbf{P} \right] \frac{2k^* \sin\left[L D_{\mathbf{KSS}} \, k^* \right]}{D_{\mathbf{KSS}}} \,, \\ D_{\mathbf{KSS}} &= \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)} \right)^2} \,. \end{split}$$

Analytical Proof: They are the same!

$$\begin{split} \bar{M}_{00}^{\mathbf{RG}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{E^*(q)}{E(q)} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq0} \cos\left[\frac{L\,\mathbf{n}\cdot\mathbf{P}}{2} \left(1 + \frac{m_1^2 - m_2^2}{E^{*\,2}(q)} \right) \right] \int_0^\alpha dt \, e^{tq^2} \\ &\times \int dk^* \, e^{-tk^{*\,2}} \frac{2k^* \sin\left[L\,D_{\mathbf{RG}}\,k^*\right]}{D_{\mathbf{RG}}} \,, \\ D_{\mathbf{RG}} &= D_{\mathbf{KSS}} = \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)}\right)^2} \,. \end{split}$$

$$\mathbf{k}^{r} = \frac{E^{*}(q)}{E^{*}(q)} \mathbf{k}_{\parallel}^{*} + \frac{1}{2} \left(1 + \frac{m_{1}^{r} - m_{2}^{2}}{E^{*2}(q)} \right) \mathbf{P} + \mathbf{k}_{\perp}^{*}, \quad \text{The arrangement of} \\ \text{energies follows two} \\ \mathbf{k}^{*} = \frac{E^{*}(q)}{E(q)} \left(\mathbf{k}_{\parallel}^{r} - \frac{1}{2} \left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)} \right) \mathbf{P} \right) + \mathbf{k}_{\perp}^{r} \quad \text{particles are both off-shell.} \\ \mathbf{k}^{T} = \frac{E^{*}(q)}{E(q)} \left(\mathbf{k}_{\parallel}^{r} - \frac{1}{2} \left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)} \right) \mathbf{P} \right) + \mathbf{k}_{\perp}^{r} \quad \text{particles are both off-shell.}$$

16

 $a^* = E^*(q), \quad b^* = \frac{E^*(q)}{2} + \frac{m_1^2 - m_2^2}{2E^*(q)} = \omega_1(q), \ \mathcal{J}^r = \frac{E^*(q)}{E(q)}$

 $\mathbf{k}^{r} = \frac{E(q)}{E^{*}(q)}\mathbf{k}_{\parallel}^{*} + \frac{1}{2}\left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)}\right)\mathbf{P} + \mathbf{k}_{\perp}^{*}, \quad \text{The arrangement of energies follows two}$

 $r = \mathbf{RG}$

Kim, Sachrajda and Sharpe NPB 727 218 (2005) $r = KSS^{2}$

$$a^* = E^*(q), \quad b^* = \omega_1(\mathbf{k}^*), \quad \mathcal{J}^r = \frac{\omega_1(\mathbf{k})}{\omega_1(\mathbf{k})}$$
$$\mathbf{k}^r = \frac{E(q)}{E^*(q)}\mathbf{k}^*_{\parallel} + \frac{\omega_1(\mathbf{k}^*)}{E^*(q)}\mathbf{P} + \mathbf{k}^*_{\perp},$$
$$\mathbf{k}^* = \frac{E(q)}{E^*(q)}\mathbf{k}^r_{\parallel} - \frac{\omega_1(\mathbf{k}^r)}{E^*(q)}\mathbf{P} + \mathbf{k}^r_{\perp}$$

The first particle is always on-shell, while second one is not.

$$\begin{split} \bar{M}_{00}^{\mathbf{KSS}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{\omega_1(\mathbf{k}^*)}{\omega_1(\mathbf{k})} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq0} \int_0^\alpha dt \, e^{tq^2} \int dk^* \, e^{-tk^{*\,2}} \\ &\times \cos\left[L \frac{\omega_1(\mathbf{k}^*)}{E^*(q)} \mathbf{n} \cdot \mathbf{P} \right] \frac{2k^* \sin\left[L D_{\mathbf{KSS}} k^* \right]}{D_{\mathbf{KSS}}} \,, \\ D_{\mathbf{KSS}} &= \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)} \right)^2} \,. \end{split}$$

Analytical Proof: They are the same!

$$\begin{split} \bar{M}_{00}^{\mathbf{RG}}(q,\,\mathbf{P}) &= \frac{4\pi}{q} \left[\frac{1}{L^3} \sum_{\mathbf{k}=\frac{2\pi}{L}\mathbf{n},\,\mathbf{n}\in\mathbb{Z}^3} \frac{E^*(q)}{E(q)} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} - \mathcal{P} \int \frac{d^3k^*}{(2\pi)^3} \frac{e^{\alpha(q^2-\mathbf{k}^{*\,2})}}{q^2-\mathbf{k}^{*\,2}} \right] \\ &- \frac{1}{\pi qL} \sum_{\mathbf{n}\in\mathbb{Z}^3,\mathbf{n}\neq0} \cos\left[\frac{L\,\mathbf{n}\cdot\mathbf{P}}{2} \left(1 + \frac{m_1^2 - m_2^2}{E^{*\,2}(q)} \right) \right] \int_0^\alpha dt \, e^{tq^2} \\ &\times \int dk^* \, e^{-tk^{*\,2}} \frac{2k^*\sin\left[L\,D_{\mathbf{RG}}\,k^*\right]}{D_{\mathbf{RG}}} \,, \\ D_{\mathbf{RG}} &= D_{\mathbf{KSS}} = \sqrt{\mathbf{n}^2 + \left(\frac{\mathbf{n}\cdot\mathbf{P}}{E^*(q)}\right)^2} \,. \end{split}$$

$$\bar{M}_{lm}^{\mathbf{RG}}(q,\,\mathbf{P}) = -\frac{1}{\pi qL} \frac{E^*(q)}{E(q)} \sqrt{4\pi} \mathcal{Z}_{lm}^{\mathbf{\Delta}}(1; \left(\frac{Lq}{2\pi}\right)^2)$$

 $Det[H(E) - EI] = 0^{17}$

s follows two s are both off-shell.

Rummukainen and Gottlieb NPB 450 397 (1997) $r = \mathbf{RG}$

Göckeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, and Zanotti PRD 86 094513 (2012)

$$\begin{aligned} a^{*} &= E^{*}(q) , \quad b^{*} = \frac{E^{*}(q)}{2} + \frac{m_{1}^{2} - m_{2}^{2}}{2E^{*}(q)} = \omega_{1}(q) , \quad \mathcal{J}^{r} = \frac{E^{*}(q)}{E(q)} \\ \mathbf{k}^{r} &= \frac{E(q)}{E^{*}(q)} \mathbf{k}^{*}_{\parallel} + \frac{1}{2} \left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)} \right) \mathbf{P} + \mathbf{k}^{*}_{\perp} , & \text{The arrangement of energies follows two} \\ \mathbf{k}^{*} &= \frac{E^{*}(q)}{E(q)} \left(\mathbf{k}^{r}_{\parallel} - \frac{1}{2} \left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{E^{*2}(q)} \right) \mathbf{P} \right) + \mathbf{k}^{r}_{\perp} & \text{particles are both of } \end{aligned}$$

 $r = \mathbf{LWLY}$

$$a^* = \omega_1(\mathbf{k}^*) + \omega_2(\mathbf{k}^*)$$
 and $b^* = \omega_1(\mathbf{k}^*)$

$$\mathbf{k}^{r} = \frac{\sqrt{(\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*}))^{2} + \mathbf{P}^{2}}}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{k}_{\parallel}^{*} + \frac{\omega_{1}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{P} + \mathbf{k}_{\perp}^{*}$$

New one, it has some benefits!

 a^* , b^* are independent on E^* ! The boosted potential is still energy independent. The eigenvectors form a complete orthonormal basis of the Hilbert space of the Hamiltonian.

18

$$\mathbf{k}^* = \frac{\omega_1(\mathbf{k}^r) + \omega_2(\mathbf{P} - \mathbf{k}^r)}{\sqrt{(\omega_1(\mathbf{k}^r) + \omega_2(\mathbf{P} - \mathbf{k}^r))^2 - \mathbf{P}^2}} \mathbf{k}_{\parallel}^r - \frac{\omega_1(\mathbf{k}^r)}{\sqrt{(\omega_1(\mathbf{k}^r) + \omega_2(\mathbf{P} - \mathbf{k}^r))^2 - \mathbf{P}^2}} \mathbf{P} + \mathbf{k}_{\perp}^r ,$$

$$\mathcal{J}^{r} = \left| \frac{\partial \mathbf{k}^{*}}{\partial \mathbf{k}^{r}} \right| = \frac{\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \frac{\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r})}{\omega_{1}(\mathbf{k}^{r})\omega_{2}(\mathbf{P} - \mathbf{k}^{r})}$$

Both particles are on-shell.

 $r = \mathbf{LWLY}$

$$a^* = \omega_1(\mathbf{k}^*) + \omega_2(\mathbf{k}^*)$$
 and $b^* = \omega_1(\mathbf{k}^*)$

$$\mathbf{k}^{r} = \frac{\sqrt{(\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*}))^{2} + \mathbf{P}^{2}}}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{k}_{\parallel}^{*} + \frac{\omega_{1}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{P} + \mathbf{k}_{\perp}^{*}$$

New one, it has some benefits!

 a^* , b^* are independent on E^* ! The boosted potential is still energy independent. The eigenvectors form a complete orthonormal basis of the Hilbert space of the Hamiltonian.

For three-body, it avoids the negative energy or the velocity being larger than the light speed, Keep $E > |\vec{P}|$.

19

 $\mathbf{k}^{*} = \frac{\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r})}{\sqrt{(\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r}))^{2} - \mathbf{P}^{2}}} \mathbf{k}_{\parallel}^{r} - \frac{\omega_{1}(\mathbf{k}^{r})}{\sqrt{(\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r}))^{2} - \mathbf{P}^{2}}} \mathbf{P} + \mathbf{k}_{\perp}^{r}, \text{ Blanton and Sharpe PRD 102, 054520 (2020)}$

$$\mathcal{J}^{r} = \left| \frac{\partial \mathbf{k}^{*}}{\partial \mathbf{k}^{r}} \right| = \frac{\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \frac{\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r})}{\omega_{1}(\mathbf{k}^{r})\omega_{2}(\mathbf{P} - \mathbf{k}^{r})}$$

Both particles are on-shell.

 $r = \mathbf{LWLY}$

$$a^* = \omega_1(\mathbf{k}^*) + \omega_2(\mathbf{k}^*)$$
 and $b^* = \omega_1(\mathbf{k}^*)$

$$\mathbf{k}^{r} = \frac{\sqrt{(\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*}))^{2} + \mathbf{P}^{2}}}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{k}_{\parallel}^{*} + \frac{\omega_{1}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \mathbf{P} + \mathbf{k}_{\perp}^{*}$$

New one, it has some benefits!

 a^* , b^* are independent on E^* ! The boosted potential is still energy independent. The eigenvectors form a complete orthonormal basis of the Hilbert space of the Hamiltonian.

For three-body, it avoids the negative energy or the velocity being larger than the light speed, keeps $E > |\vec{P}|$.

 $\mathbf{k}^{*} = \frac{\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r})}{\sqrt{(\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r}))^{2} - \mathbf{P}^{2}}} \mathbf{k}_{\parallel}^{r} - \frac{\omega_{1}(\mathbf{k}^{r})}{\sqrt{(\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r}))^{2} - \mathbf{P}^{2}}} \mathbf{P} + \mathbf{k}_{\perp}^{r}, \text{ Blanton and Sharpe PRD 102, 054520 (2020)}$

$$\mathcal{J}^{r} = \left| \frac{\partial \mathbf{k}^{*}}{\partial \mathbf{k}^{r}} \right| = \frac{\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})}{\omega_{1}(\mathbf{k}^{*}) + \omega_{2}(\mathbf{k}^{*})} \frac{\omega_{1}(\mathbf{k}^{r}) + \omega_{2}(\mathbf{P} - \mathbf{k}^{r})}{\omega_{1}(\mathbf{k}^{r})\omega_{2}(\mathbf{P} - \mathbf{k}^{r})}$$

Weak point, we caution the breaking of relativistic invariance of the three-particle divergence-free K matrix identified.

Blanton and Sharpe, PRD 103, 054503 (2021)

Both particles are on-shell.

Introduction of HEFT

J. M. M. Hall etc. PRD 87(2013), 094510 J.-j. Wu etc. PRC90 (2014), 055206 Y. Li etc. PRD 101(2020), 114501 PRD 103(2021), 094518

21

 $H = H_0 + H_I$ |B_i> bare state, bare mass m_i, $|\alpha(k_\alpha)>$ non-interaction channels

$$H_{0} = \sum_{i=1,n} |B_{i}\rangle m_{i} \langle B_{i}| + \sum_{\alpha} |\alpha(k_{\alpha})\rangle \Big[\sqrt{m_{\alpha1}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha2}^{2} + k_{\alpha}^{2}} \Big] \langle \alpha(k_{\alpha})|$$

$$H_{I} = \hat{g} + \hat{v} \qquad \hat{g} = \sum_{\alpha} \sum_{i=1,n} \Big[|\alpha(k_{\alpha})\rangle g_{i,\alpha}^{+} \langle B_{i}| + |B_{i}\rangle g_{i,\alpha} \langle \alpha(k_{\alpha})| \Big] \xrightarrow{\alpha_{1}}_{\alpha_{2}} \xrightarrow{B_{i}}_{\beta_{1}}$$

$$\hat{v} = \sum_{\alpha,\beta} |\alpha(k_{\alpha})\rangle v_{\alpha,\beta} \langle \beta(k_{\beta})| \xrightarrow{\alpha_{1}}_{\alpha_{2}} \xrightarrow{\beta_{1}}_{\beta_{2}}$$

Introduction of HEFT

J. M. M. Hall etc. PRD 87(2013), 094510 J.-j. Wu etc. PRC90 (2014), 055206 Y. Li etc. PRD 101(2020), 114501 PRD 103(2021), 094518

22

 $H = H_0 + H_I$ |B_i> bare state, bare mass m_i, $|\alpha(k_{\alpha})>$ non-interaction channels

中国科学

University of Chinese Academy of Science

$$H_{0} = \sum_{i=1,n} |B_{i}\rangle m_{i} \langle B_{i}| + \sum_{\alpha} |\alpha(k_{\alpha})\rangle \Big[\sqrt{m_{\alpha1}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha2}^{2} + k_{\alpha}^{2}} \Big] \langle \alpha(k_{\alpha})|$$

$$H_{I} = \hat{g} + \hat{v} \qquad \hat{g} = \sum_{\alpha} \sum_{i=1,n} \Big[|\alpha(k_{\alpha})\rangle g_{i,\alpha}^{+} \langle B_{i}| + |B_{i}\rangle g_{i,\alpha} \langle \alpha(k_{\alpha})| \Big] \xrightarrow{\alpha_{1}} \sum_{\alpha_{2}} B_{i}$$

$$\hat{v} = \sum_{\alpha,\beta} |\alpha(k_{\alpha})\rangle v_{\alpha,\beta} \langle \beta(k_{\beta})| \xrightarrow{\alpha_{1}} \sum_{\alpha_{2}} B_{i}$$
Continuum
$$\int d\vec{k} \longrightarrow \sum_{i} (2\pi/L)^{3} |\alpha(\vec{k}_{\alpha})\rangle \longrightarrow (2\pi/L)^{3/2} |\vec{k}_{i}, -\vec{k}_{i}\rangle_{\alpha}$$

$$\langle \beta(\vec{k}_{\beta})|\alpha(\vec{k}_{\alpha})\rangle = \delta_{\alpha\beta}\delta(\vec{k}_{\alpha} - \vec{k}_{\beta}) \longrightarrow \beta \langle \vec{k}_{j}, -\vec{k}_{j}| \vec{k}_{i}, -\vec{k}_{i}\rangle_{\alpha} = \delta_{\alpha\beta}\delta_{ij}$$

$$H_{0} = \sum_{i=1,n} |B_{i}\rangle m_{i} \langle B_{i}| + \sum_{\alpha,i} |\vec{k}_{i}, -\vec{k}_{i}\rangle_{\alpha} \Big[\sqrt{m_{\alpha\beta}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alphaM}^{2} + k_{\alpha}^{2}} \Big]_{\alpha} \langle \vec{k}_{i}, -\vec{k}_{i}|$$

$$H_{I} = \sum_{i} (2\pi/L)^{3/2} \sum_{\alpha} \sum_{\alpha,j=n} \Big[|\vec{k}_{j}, -\vec{k}_{j}\rangle_{\alpha} g_{i,\alpha}^{+} \langle B_{i}| + |B_{i}\rangle g_{i,\alpha}} \langle \vec{k}_{j}, -\vec{k}_{j}| \Big] + \sum_{i} (2\pi/L)^{3} \sum_{\alpha,\beta} |\vec{k}_{i}, -\vec{k}_{i}\rangle_{\alpha} v_{\alpha,\beta-\beta} \langle \vec{k}_{j}, -\vec{k}_{j}|$$

Introduction of HEFT

J. M. M. Hall etc. PRD 87(2013), 094510 J.-j. Wu etc. PRC90 (2014), 055206 Y. Li etc. PRD 101(2020), 114501 PRD 103(2021), 094518

 $|B_i\rangle$ bare state, bare mass m_i , $|\alpha(k_\alpha)\rangle$ non-interaction channels $H = H_0 + H_I$ $H_{0} = \sum_{i=1,n} \left| B_{i} \right\rangle m_{i} \left\langle B_{i} \right| + \sum_{\alpha} \left| \alpha(k_{\alpha}) \right\rangle \left[\sqrt{m_{\alpha 1}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha 2}^{2} + k_{\alpha}^{2}} \right] \left\langle \alpha(k_{\alpha}) \right|$ $[H_0]_{N_c+1} = \begin{pmatrix} m_0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & \epsilon_1(k_0) & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \epsilon_2(k_0) & \cdots & 0 & 0 & \cdots \\ 0 & 0 & 0 & \ddots & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots & \epsilon_{n_c}(k_0) & 0 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & \epsilon_1(k_1) & \cdots \end{pmatrix}$ $H_{I} = \hat{g} + \hat{v} \qquad \hat{g} = \sum_{\alpha} \sum_{i=1,n} \left[\left| \alpha(k_{\alpha}) \right\rangle g_{i,\alpha}^{+} \left\langle B_{i} \right| + \left| B_{i} \right\rangle g_{i,\alpha} \left\langle \alpha(k_{\alpha}) \right| \right] \xrightarrow{\alpha_{1}} B_{i}$ $\hat{v} = \sum_{\alpha,\beta} |\alpha(k_{\alpha})\rangle v_{\alpha,\beta} \langle \beta(k_{\beta})| \qquad \sum_{\alpha_{2}}^{\alpha_{1}} \langle \beta_{2}\rangle \langle \beta_{2}$ $\begin{pmatrix} 0 & g_1^V(k_0) & g_2^V(k_0) & \cdots & g_{n_c}^V(k_0) & g_1^V(k_1) & \cdots \\ g_1^V(k_0) & v_{1,1}^V(k_0, k_0) & v_{1,2}^V(k_0, k_0) & \cdots & v_{1,n_c}^V(k_0, k_0) & v_{1,1}^U(k_0, k_1) & \cdots \\ g_2^V(k_0) & v_{2,1}^V(k_0, k_0) & v_{2,2}^V(k_0, k_0) & \cdots & v_{2,n_c}^V(k_0, k_0) & v_{2,1}^V(k_0, k_1) & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots \\ g_{n_c}^V(k_0) & v_{n_c,1}^V(k_0, k_0) & v_{n_c,2}^V(k_0, k_0) & \cdots & v_{n_c,n_c}^V(k_0, k_0) & v_{n_c,1}^V(k_0, k_1) & \cdots \\ g_1^V(k_1) & v_{1,1}^V(k_1, k_0) & v_{1,2}^V(k_1, k_0) & \cdots & v_{1,n_c}^V(k_1, k_0) & v_{1,1}^V(k_1, k_1) & \cdots \\ \end{pmatrix}$ $\int d\vec{k} \longrightarrow \sum_{i} \left(\frac{2\pi}{L} \right)^{3} \qquad \left| \alpha(\vec{k}_{\alpha}) \right\rangle \longrightarrow \left(\frac{2\pi}{L} \right)^{-3/2} \left| \vec{k}_{i}, -\vec{k}_{i} \right\rangle_{\alpha}$ $\left\langle \beta(\vec{k}_{\beta}) \left| \alpha(\vec{k}_{\alpha}) \right\rangle = \delta_{\alpha\beta} \delta(\vec{k}_{\alpha} - \vec{k}_{\beta}) \longrightarrow \int_{\beta} \left\langle \vec{k}_{j}, -\vec{k}_{j} \right| \vec{k}_{i}, -\vec{k}_{i} \right\rangle_{\alpha} = \delta_{\alpha\beta} \delta_{ij}$ Continuum Discrete $[H_I]_{N_c+1} =$ $H_{0} = \sum_{i=1,n} \left| B_{i} \right\rangle m_{i} \left\langle B_{i} \right| + \sum_{\alpha,i} \left| \vec{k}_{i}, -\vec{k}_{i} \right\rangle_{\alpha} \left[\sqrt{m_{\alpha_{B}}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha_{M}}^{2} + k_{\alpha}^{2}} \right]_{\alpha} \left\langle \vec{k}_{i}, -\vec{k}_{i} \right|$ $(H_0+H_I) |\Psi \rangle = E |\Psi \rangle$ $H_{I} = \sum_{i} \left(\frac{2\pi}{L} \right)^{3/2} \sum_{\alpha} \sum_{i=1}^{n} \left[\left| \vec{k}_{j}, -\vec{k}_{j} \right\rangle_{\alpha} g_{i,\alpha}^{+} \left\langle B_{i} \right| + \left| B_{i} \right\rangle g_{i,\alpha} \left| \alpha \left\langle \vec{k}_{j}, -\vec{k}_{j} \right| \right] + \sum_{i} \left(\frac{2\pi}{L} \right)^{3} \sum_{\alpha, \beta} \left| \vec{k}_{i}, -\vec{k}_{i} \right\rangle_{\alpha} v_{\alpha,\beta} \left| \beta \left\langle \vec{k}_{j}, -\vec{k}_{j} \right| \right]$ Eigen-Value ↔ Lattice Spectrum 23

The test in S-wave of $\pi\pi$ scattering

The test in S-wave of $\pi\pi$ scattering

Summary

- We explore the general formalism of momentum transformation in a finite volume.
- We discuss three different transformation methods, two of which have been investigated in previous studies. The third method is a novel approach that offers advantages for the Hamiltonian method and the study of three-body systems. All three methods are consistent within errors of $O(e^{-mL})$.
- Finally, we provide a comparison of the finite volume spectrum between the Hamiltonian and KSS methods based on the same phase shift of $\pi\pi$ scattering for S-wave interactions.

Thanks for attention!

 $T = V + VG_2T,$

$$T^L = V + V G_2^B T^L \,,$$

 $T^L = T + TG_2^L T^L,$ $G_2^L \equiv G_2^B - G_2.$

The detailed derivation

$$T^{L} = V + V \left(G_{2} + G_{2}^{B} - G_{2} \right) T^{L} = V + V \left(G_{2} + G_{2}^{L} \right) T^{L},$$
$$T - T^{L} = -(1 - VG_{2})^{-1} V G_{2}^{L} T^{L}.$$

中国科学院大学

University of Chinese Academy of Sciences

QC in the finite volume of rest frame

$$\begin{split} T &= V + VG_2T, \\ T(p_f^*, p_i^*; P^*) &= V(p_f^*, p_i^*; P^*) + \int \frac{d^4k^*}{(2\pi)^4} V(p_f^*, k^*; P^*) G_2(k^*; P^*) T(k^*, p_i^*; P^*) \\ T^L &= V + VG_2^B T^L, \\ T^L(p_f^*, p_i^*; P^*) &= V(p_f^*, p_i^*; P^*) + \int \frac{d^4k^*}{(2\pi)^4} V(p_f^*, k^*; P^*) G_2^B(k^*, P^*) T^L(k^*, p_i^*; P^*) \\ T^L(p_f^*, p_i^*; P^*) &= V(p_f^*, p_i^*; P^*) + \int \frac{dk_0^*}{2\pi} \frac{1}{L^3} \sum_{\mathbf{k}^* = \frac{2\pi \mathbf{n}}{L}, \mathbf{n} \in \mathcal{Z}^3} V(p_f^*, k^*; P^*) G_2(k^*, P^*) T^L(k^*, p_i^*; P^*) \\ T^L &= T + TG_2^L T^L, \quad G_2^L \equiv G_2^B - G_2. \\ T^L(p_f^*, p_i^*; P^*) &= T(p_f^*, p_i^*; P^*) + \int \frac{dk_0^*}{2\pi} \left(\frac{1}{L^3} \sum_{\mathbf{k}^*} - \int \frac{d^3k^*}{(2\pi)^3}\right) T(p_f^*, k^*; P^*) G_2(k^*, P^*) T^L(k^*, p_i^*; P^*) \\ \end{split}$$

一种学院大学

University of Chinese Academ

QC in the finite volume of rest frame

 $T^{L} = T + TG_{2}^{L}T^{L}, \ G_{2}^{L} \equiv G_{2}^{B} - G_{2},$ $T^{L}(p_{f}^{*}, p_{i}^{*}; P^{*}) = T(p_{f}^{*}, p_{i}^{*}; P^{*}) + \int \frac{dk_{0}^{*}}{2\pi} \left(\frac{1}{L^{3}} \sum_{\mathbf{k}^{*}} - \int \frac{d^{3}k^{*}}{(2\pi)^{3}}\right) T(p_{f}^{*}, k^{*}; P^{*})G_{2}(k^{*}, P^{*})T^{L}(k^{*}, p_{i}^{*}; P^{*})$ $G_{2}(k; P) = \frac{1}{(k^{2} - m_{1}^{2} + i\epsilon)} \frac{1}{((P - k)^{2} - m_{2}^{2} + i\epsilon)} \qquad (1) \ k_{0}^{*} = -\omega_{1}(\mathbf{k}^{*}) + i\epsilon,$ $(2) \ k_{0}^{*} = P_{0}^{*} - \omega_{2}(\mathbf{k}^{*}) + i\epsilon$

$$G_{2}(k^{*};P^{*}) \rightarrow \frac{1}{-2\omega_{1}(\mathbf{P}^{*}-\mathbf{k}^{*})} \frac{1}{P_{0}^{*}+\omega_{1}(\mathbf{k}^{*})-\omega_{2}(\mathbf{k}^{*})} \frac{(2\pi)i\,\delta(k_{0}^{*}+\omega_{1}(\mathbf{k}^{*}))}{P_{0}^{*}+\omega_{1}(\mathbf{k}^{*})+\omega_{2}(\mathbf{k}^{*})} + \frac{1}{2\omega_{2}(\mathbf{k}^{*})} \frac{1}{P_{0}^{*}+\omega_{1}(\mathbf{k}^{*})-\omega_{2}(\mathbf{k}^{*})} \frac{(2\pi)i\,\delta(k_{0}^{*}-(P_{0}^{*}-\omega_{2}(\mathbf{k}^{*})))}{P_{0}^{*}-\omega_{1}(\mathbf{k}^{*})-\omega_{2}(\mathbf{k}^{*})+i\epsilon}$$

$$T^{L}(\mathbf{p}_{f}^{*}, \mathbf{p}_{i}^{*}; E^{*}) = T(\mathbf{p}_{f}^{*}, \mathbf{p}_{i}^{*}; E^{*}) + i\left(\frac{1}{L^{3}}\sum_{\mathbf{k}^{*}} -\int \frac{d^{3}k^{*}}{(2\pi)^{3}}\right)\frac{T(\mathbf{p}_{f}^{*}, \mathbf{k}^{*}; E^{*})}{4\omega_{1}(\mathbf{k}^{*})\omega_{2}(\mathbf{k}^{*})}\frac{T^{L}(\mathbf{k}^{*}, \mathbf{p}_{i}^{*}; E^{*})}{E^{*} - \omega_{1}(\mathbf{k}^{*}) - \omega_{2}(\mathbf{k}^{*}) + i\epsilon}$$

▲ 中国科学院大学

30

Quantization

Condition $[T^{L}(q;\mathbf{P})] = \left([T(q)]^{-1} - [F(q)]\right)^{-1} \qquad [F(E^*)]_{lm,l'm'} = \left(\frac{1}{L^3}\sum_{\mathbf{k}^*} -\int \frac{d^3k}{(2\pi)^3}\right) \frac{i}{4\omega_1(\mathbf{k}^*)\,\omega_2(\mathbf{k}^*)} \frac{Y_{lm}(\hat{k}^*)Y_{l'm'}^*(\hat{k}^*)\left(\frac{|\mathbf{k}^*|}{q}\right)^{l+l}}{E^* - (\omega_1(\mathbf{k}^*) + \omega_2(\mathbf{k})^*) + i\varepsilon}$