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The Principal Chiral Model Acceleration Results
In the continuum, the 2D SU(N) x SU(N) model is defined via the Euclidean La- | | To test the algorithm’s etficiency we measured the integrated autocorrelation time of
grangian: the susceptibility (prone to critical slowing down). The IAT for different correlation
r— 1 Tr 8. U0 (1) lengths £ and SU () groups are presented below for both HMC and FA HMC. This
— 1 i : : . .. . : .
T work is a continuation and generalisation of [1] in which SU(2) was examined, there-
On the lattice, the model 1s defined via the action: fore we include some of its data for large correlations in our SU(2) plot.
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 Shares properties with QCD (asymptotic freedom and dynamical mass generation). T 10+
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. . N o o R E }’,,,’ : 4@' 102_: ’’’’’ A
* Possible to obtain analytical predictions — exact solution through Bethe ansatz. . ~ " o
? ,x’/ T
. . . . . . . : /"’ x 1 | A i B = L
By studying the effect of Fourier acceleration in this model, we aim to establish a ol . e PPN 10" 4 P s
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foundation for investigating more complex theories and, ultimately, QCD. | - £ e | o
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We now present a small subset of the properties of the model analysed with our lattice Y v ? £ v
simulations. We show the SU(4) energy density and the heat capacity for different V. (a) SU(2) (b) SU(3)
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(a) SU(4) Energy Density (b) Heat Capacity for Different N © 55 () @ SgU 6)
Figure 1: Properties of the model: energy density and heat capacity Figure 2: Autocorrelation time 7747 as a function of the correlation length for several
| The energy density results agree with predictions — model validation. SU(N) choices in accelerated and non-accelerated algorithm versions.
2 Peak 1n heat capacity — suggests a phase transition in the N — oo limit. The following conclusions can be extracted from our results:

I FA does not completely eliminate critical slowing down — 1t mitigates it.

i HMC & Fourlel‘ Acceleratlon 2 One order of magnitude speedup at small correlation lengths.

In HMC the configurations that build up the Markov chain are obtained by introducing 3 Two orders of magnitude improvement at high correlation lengths.

a conjugate field 7 and evolving both fields using a Hamiltonian: 4 The relative advantage of FA HMC over HMC decreases as /N increases — larger

H = %77 .4+ S(U) (3) group space associated with higher N?

, . _ . _ FA HMC reduces the impact of critical slowing down but also introduces a more
In turn, this means that the molecular dynamics evolution of the fields is determined | | complex molecular dynamics evolution. Therefore, it is essential to ensure that the

by: reduction in IAT compensates for any increase in run time. We define the algorithmic
1 cost as: ,
frp = =2iBN Y ((Upsy + Us—y) UL = h.c) ~Tr{H (4) Cost——_ Tme (10)
| 110 N° Configurations
Uy = 1m, U, (5) | | The plots below show the cost ratio between traditional HMC and FA HMC for vari-

. . ous ¢ and N values.
In HMC, higher momentum modes evolve faster than those with lower momentum S

and 1mpose a strict upper bound on the integration step size. This means the more
physical low-energy modes barely evolve — high autocorrelations between the con- 17 o
figurations. Taking the limit a — 0 only accentuates this (more high energy modes ; :
are included in the simulation), causing the Integrated Autocorrelation Time (IAT) to
diverge as Trar X a” &= £°
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Fourier acceleration (FA) aims to solve the problem of critical slowing down by speed- ; i . 1 i SRR
ing up the evolution of low momentum modes and slowing down the high ones. The (a) SU(2) (b) SU(3) (¢) SU(6)
goal 1s to make the evolution rate independent of the mode’s momentum, removing Figure 3: Cost ratio as a function of the correlation length for several SU(N).

critical slowing down. The 1dea behind FA 1s to modify the dynamics of the system
by adding a momentum-dependent mass in the Hamiltonian which can differentiate
between the different modes. In particular, this 1s done by introducing the inverse
kernel of the action 1n the conjugate field term:

1. Results confirm that FA HMC outperforms HMC — order of magnitude speed-up
for moderate & ~ 10 even when accounting for run-time.

2.Once more, the advantage of FA HMC diminishes as /V increases — several ele-
ments contribute to the algorithm’s cost, all of which could vary as /V 1s increased.
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S—U.-K-U ™| Conclusion & Further Research

The name Fourier acceleration comes from the fact that the kernel K 1s diagonal 1n
Fourier space, which greatly simplifies its inversion. In the case of the principal chiral
model, the inverse kernel in Fourier space 1s given by:
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K, (M) =
< (M) ZullsinQ(ﬂZ”) - M?

e Generalised FA for general N in the 2D principal chiral model.
e Achieved order of magnitude speed-up even at modest correlation lengths.

e Verified physical results (exact mass spectra, continuum limit) for the model, ex-
(8) ceeding precision of previous studies.

* Next step — Gauge Theories.

where M? is a tuneable parameter. The modification of the Hamiltonian induces a

change in the discrete-time update of the field U: References
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