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Introduction
Monte Carlo simulations of 4d gauge theories

with and without fermionic matter are known to
be plagued by large auto-correlation times due to

slow topological modes on fine lattices.

We have recently proposed a novel approach
designed to mitigate topological freezing that
combines a non-equilibrium Monte Carlo with

Open Boundary Conditions (OBC).
[Bonanno, Nada, DV, JHEP 04 (2024) 126]

[arXiv:2402.06561]

In this contribution we investigate its application
to the case of 4d SU(3) Yang–Mills theory.

Our proposal, already applied to 2d CPN−1 mod-
els, features

• a formal description in terms of non-
equilibrium Statistical Mechanics

• a clear understanding of the scaling of the
costs with the degrees of freedom

• comparable performances with other re-
cent state-of-the-art algorithms, like Parallel
Tempering on Boundary Conditions

• a simple generalization to Stochastic Nor-
malizing Flows

Topological Freezing
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Lattice setup
• Consider a lattice with Periodic Boundary

Conditions (PBCs) everywhere but on a
small region (the defect), subject to Open
Boundary Conditions (OBCs).

• Generate a thermalized gauge ensemble
with OBCs, separating configurations by
nbetween updating steps

• Starting from OBCs, perform a non-
equilibrium evolution gradually switch-
ing on PBCs

• Links crossing the defect have gauge cou-
pling decreased as β −→ β × c(n) with
0 ≤ c(n) ≤ 1. A linear protocol is used
c(n) = 1 − n

nstep−1

• Using averages on non-equilibrium evolu-
tions, we obtain expectation values with re-
spect to target distribution (PBCs) start-
ing from prior distribution with OBCs.

χ = 1
V

⟨Q2⟩NE = 1
V

⟨Q2e−W ⟩f
⟨e−W ⟩f

Out-of-equilibrium evolutions
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Jarzynski’s equality is simply

⟨exp(−W )⟩f = exp (−∆F )

with the work

W =
nstep−1∑

n=0

{
Sc(n+1)[Un] − Sc(n)[Un]

}

Horizontal axis = Equilibrium MC q0 with OBCs

Vertical axis = Out-of-equilibrium evolution with
protocol c(n)

Forward transition probability defines the evolu-
tion

Pf [U0, . . . , U ] =
nstep∏
n=1

Pc(n)(Un−1 → Un)

Average over the evolutions is taken as

⟨. . . ⟩f =
∫

[dU0 . . . dU ]q0(U0) Pf [U0, . . . , U ] . . .

The reverse Kullback-Leibler divergence is used to
estimate how far from equilibrium the evolution is

D̃KL(q0Pf∥pPr) = ⟨W ⟩f − ∆F ≥ 0

Scaling with the defect
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Larger defects imply more degrees of freedom
changing along an evolution.

More steps are required for fixed D̃KL: the scaling
is well approximated by

nstep ∼ (Ld/a)3

Results for β = 6.40 on a 304 lattice (a ≃ 0.05 fm)

To calibrate the algorithm, we tried several combinations of Ld, nstep, nbetween.
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Standard MCMC
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Values for the topological susceptibility are in
perfect agreement with results obtained with

standard algorithm (PBC).

When sufficiently close to equilibrium the
susceptibility is not affected by the details of the

evolutions.
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Ld/a = 5, nbetween = 50
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Small autocorrelations times are obtained either
by using larger Ld or larger nbetween.

We test the efficiency of the method by looking at
the variance of χ times the cost of a single

evolution in terms of updates.

Future outlooks

• Perform a systematic investigation of the performances of our out-of-equilibrium setup on even finer lattices

• Extension to Stochastic Normalizing Flows: apply gauge-equivariant layers on the stochastic approach


