Eigenspectra of Minimally Doubled Fermions

Abhijeet Kishore

IIT Kanpur

Collaborator: D. Chakrabarti, IIT Kanpur

Lattice 2024 University of Liverpool

31st July 2024

		1.7.1	
Abb	lleet	KIS	hore
/	1000		

- 1 Motivation and previous work
- 2 Minimally doubled fermion
- \bigcirc SU(3) gauge field with a topological charge
- Index theorem and Spectral flow
- G Algorithm used to calculate eigenvalues
- 6 Results
- Conclusion
- 8 References

- By calculating the eigenspectra of the Dirac operator, we want to see how the background gauge field topology is expressed ,i.e., index theorem
- There is a theoretical approach to the index of the staggered fermions but it does not give an integer value from the beginning and requires a renormalization depending upon the ensemble of the gauge fields [Smit and Vink, NPB 286 (1987) 485; NPB 298 (1988) 557]
- In 2010, David Adams showed that, with addition of a flavoured mass term, index of the staggered fermions correctly represents the topological charge up to a factor coming from flavours using the spectral flow of a certain hermitian version of the Dirac operator.
 [Adams, PRL 104 (2010) 141602]

- There have some studied done afterwards using flavored mass terms for staggered and minimally doubled fermions in 2-dim to study index theorem [Creutz, Kimura, and Misumi, JHEP 12 (2010) 041; Forcrand, Kurkela, Panero, JHEP 04 (2012) 142; Durr and Weber, PRD 105, 114511 (2022)]
- Study done for staggered fermion in 2-dim and 4-dim by Follana et al. [Azcoiti, Follana, Vaquero, and Carlo, PLB 744 (2015) 303–308]
- In this work, we have obtained the index for minimally doubled fermions, viz., Karsten-Wilczek and Borici-Creutz fermions in 4-dim with an SU(3) background gauge field by obtaining their eigenspectra

Minimally doubled fermion

- Examples of MDF are Borici-Creutz (BC) and Karsten-Wilczek (KW) fermions
- They have minimum no. of species two excitations, respect chiral symmetry.
- BC-dirac operator in d-dimension:

$$D_{BC}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) + \frac{i}{2} \sum_{\mu} \gamma'_{\mu} \Box_{\mu}(x,y)$$
$$D_{BC}(p) = \underbrace{\sum_{\mu} i \gamma_{\mu} \sin p_{\mu} - 2i \sum_{\mu} \gamma'_{\mu} [\sin(p_{\mu}/2)]^{2}}_{\text{Two zeros : (i) } p_{\mu} = 0, \text{ (ii) } p_{\mu} = \frac{\pi}{2}}$$
$$\text{where } \gamma'_{\mu} = \frac{2}{\sqrt{d}} \Gamma - \gamma_{\mu}, \Gamma = \frac{1}{\sqrt{d}} \sum_{\mu} \gamma_{\mu}$$

31st July 2024

5/18

• KW-dirac operator in d-dimension:

$$D_{KW}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) - \frac{i}{2} \gamma_{d} \sum_{\mu=1}^{d-1} \Box_{\mu}(x,y)$$
$$D_{KW}(p) = \sum_{\mu} i \gamma_{\mu} \sin p_{\mu} + 2i \gamma_{d} \sum_{\mu=1}^{d-1} [\sin(p_{\mu}/2)]^{2}$$
$$\text{Two zeros : (i) } p_{\mu} = 0, \text{ (ii) } p_{\mu} = 0, \mu \neq d \& p_{d} = \pi$$

SU(3) gauge field with a topological charge

 In 4-dim with a simple SU(3) gauge field having a non-zero topological charge on lattice is as follows: [Smit and Vink, NPB 286 (1987) 485; Gattringer and Hip, NPB 536 (1999) 363-380]

$$U_1(x) = \exp(-i\omega_1 a x_2 \tau)$$

$$U_{2}(x) = \begin{cases} 1, & \text{for } x_{2} = 0, a, ..., (N-2)a\\ exp(i\omega_{1}Lx_{1}\tau), & \text{for } x_{2} = (N-1)a\\ U_{3}(x) = exp(-i\omega_{2}ax_{4}\tau) \end{cases}$$

$$U_4(x) = \begin{cases} 1, & \text{for } x_4 = 0, a, ..., (N-2)a \\ exp(i\omega_2 L x_3 \tau), & \text{for } x_4 = (N-1)a \end{cases}$$

where L = Na, $\omega_i a^2 = \frac{2\pi n_i}{L^2}$, $Q = 2n_1n_2$, $\tau = \text{Gell-Mann matrix}$, $x = (x_1, x_2, x_3, x_4)$

Abhijeet Kishore

SU(3) gauge field with a topological charge

• The plaquette elements are constant:

$$U_{\mu
u}(x)=U_{\mu}(n)U_{
u}(x+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{
u})U^{\dagger}(x)$$

with

$$U_{12} = exp(-i\omega_1 au)$$

 $U_{34} = exp(-i\omega_2 au)$

and all other plaquettes

$$U_{\mu
u}=1$$

• Discritized field strength tensor $F_{\mu\nu}(x)$ upto O(a):

$$F^{plaq}_{\mu
u}(x) = rac{1}{2}(U_{\mu
u}(x) - U^{\dagger}_{\mu
u}(x))_{AH} + O(a^2)$$

• Charge calculation:

Abhiieet

$$Q(x) = -\sum_{x} q(x), \text{ where } q(x) = \frac{1}{4\pi^2} \operatorname{Tr}(F_{12}F_{34} - F_{13}F_{24} + F_{23}F_{14})$$
Kishore
Lattice 2024

SU(3) gauge field with a topological charge

• Roughening of the smooth gauge fields:

$$U_{\mu}(x)_{rough} = U_{\mu}(x)_{(\delta)}U_{\mu}(x)_{old}$$

where $U_{\mu}(x)_{old}$ are smooth links previously defined and $U_{\mu}(x)_{(\delta)}$ are SU(3) elements in the vicinity of 1

$$U_{\mu}(x)_{(\delta)} = exp(i\sum_{j} heta_{j}\lambda_{j})$$

 $\theta_j(x)$ is a random number uniformly distributed in $(-\delta\pi, \delta\pi)$

- Next we have used $O(a^2)$ -improved field strength tensor to calculate charge of the roughened gauge configs
- For small δ , topological charge still remains closer to the charge of smooth gauge config

Index theorem and Spectral flow

 The index is defined as the difference between the number of zero modes of the massless Dirac operator with positive and negative chirality, n₊ and n₋:

$$index(D) = n_+ - n_-$$

• Index theorem :

 $index(D) = (-1)^{d/2}Q$, where Q = topological charge

• We can calculate the zero-mode chiralities, but there is another way called spectral flow. We need a certain hermitian version of the Dirac operator :

$$H(m) = \gamma_5(D+m)$$

Zero-modes of D : eigenvalues of $H(m) = \lambda(m) = \pm m \rightarrow \pm$ chirality

• $\lambda(m) = \pm m$ will cross the origin with slopes ± 1 depending on \pm chirality as mass varies [Adams, PRL 104 (2010) 141602; Creutz, Kimura, and Misumi, JHEP 12 (2010) 041]

Index theorem and Spectral flow

- For lattice fermions such as MDF, the index cancel between doublers, so we cannot see the eigenvalue flow with just simple mass term.
- We need a flavoured mass term (point-splitting method)
- Hermitian dirac operator for BC- and KW-fermion with different flavoured mass terms:

$$egin{aligned} \mathcal{H}_{BC}(m) &= \gamma_5(D_{BC}+m[(2\mathit{C_{sym}}-1)\otimes 1])\ \mathcal{H}_{KW}(m) &= \gamma_5(D_{KW}+m[\mathit{C_{sym}}\otimes 1]) \end{aligned}$$

where
$$C_{sym} = \frac{1}{d!} \sum_{perm} C_1 C_2 ... C_d$$

$$\mathcal{C}_{\mu}(x,y)\psi(y)=rac{1}{2}[U_{\mu}\psi(x+\hat{\mu})+U^{\dagger}_{\hat{\mu}}(x-\hat{\mu})\psi(x-\hat{\mu})]$$

[Creutz, Kimura, and Misumi, JHEP 12 (2010) 041; Creutz, PoS, LATTICE2010 (2010) 078; Durr and Weber, PRD 105, 114511 (2022)]

Abhijeet Kishore

- We have used Kalkreuter-Simma algorithm to calculate eigenvalues [Kalkreuter and Simma, Computer Physics Communications 93 (1996) 33-47]
- It is a variant of Conjugate-Gradient method
- It can be used for hermitian matrix whose eigenvalues are bounded from below
- It uses CG-method coupled with intermediate diagonalizations to calculate eigenvalues and eigenvectors
- We have implemented this algorithm in publicly available MILC-code

Results

Figure: 1(a) BC-fermion with just mass

Figure: 1(b) BC-fermion with flavoured mass

• In 1(b) figure, there are two doubled crossings with negative slope, i.e., $n_+ = 0, \ n_- = 2 \times 2$, for Q = -2 following $n_+ - n_- = 2(-1)^{d/2}Q$, $q_{\rm resc} = -2$

Abhijeet Kishore

Lattice 2024

Results

Figure: 2(a) KW-fermion with just mass

Figure: 2(b) KW-fermion with flavoured mass

• In 2(b) figure, there are two doubled crossings with negative slope, i.e., $n_+ = 0, \ n_- = 2 \times 2$, for Q = -2 following $n_+ - n_- = 2(-1)^{d/2} Q_{p_+ q_-}$,

Abhijeet Kishore

Lattice 2024

• We verified the index theorem in 4-dim with a background SU(3) gauge field using eigenspectra of minimally doubled fermions, viz., BC- and KW-fermions

1

Э

- R. G. Edwards, U. M. Heller, R. Narayanan, "Spectral flow, condensate and topology in lattice QCD", Nucl. Phys. B 535 (1998) 403-422
- S. Dürr, J. H. Weber, "Minimally doubled fermions and topology in 2D", Proc. Sci., LATTICE2021 (2021) 556
- S. Dürr, J. H. Weber, "Topological properties of minimally doubled fermions in two spacetime dimensions", Phys. Rev. D 105, (2022), 114511
- V. Azcoiti, G. Di Carlo, E. Follana, and A. Vaquero, "Topological index theorem on the lattice through the spectral flow of staggered fermions", Phys. Lett. B 744, 303 (2015)

Thank You

・ 同 ト ・ ヨ ト ・ ヨ ト

Back up slides

Figure: BC-fermion with flavoured mass

- With positive topological charge
- In this figure, there are two doubled crossings with positive slope, i.e., $n_+ = 2 \times 2$, $n_- = 0$, for Q = 2 following $n_+ n_- = 2(-1)^{d/2}Q$

Back up slides

Figure: BC-fermion with flavoured mass

Zoomed in to see doubled crossings

Abhijeet Kishore

31st July 2024 18 / 18