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Overview

Goal: study QCD using lattice models with finite dimensional local Hilbert space

Our approach: qubit regularization1,2,3,4 of traditional lattice models

This talk: reformulate the theory using Schwinger fermions; reproduce the physics (IR and
UV) of 2d SU(N) QCD

1H. Singh and S. Chandrasekharan, 2019, Phys. Rev. D arXiv: 1905.13204 (hep-lat)
2T. Bhattacharya et al., 2021, Phys. Rev. Lett. arXiv: 2012.02153 (hep-lat)
3H. Liu and S. Chandrasekharan, 2022, Symmetry arXiv: 2112.02090 (hep-lat)
4S. Maiti et al., 2024, PoS arXiv: 2401.10157 (hep-lat)
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Review of Schwinger boson representation of SU(2)

aα† : α = 1, 2 are boson creation operators that transform as an SU(2) doublet:

[aα, aβ ] = [aα†, aβ†] = 0, [aα, aβ†] = δαβ .

The generators of SU(2) are defined as Ja := 1
2a

α†σa
αβa

β =⇒ [Ja, Jb] = iεabcJc

The number operator n̂ := a1†a1 + a2†a2 distinguishes different irreps of SU(2) (number
of boxes in the Young diagram · · · ), and is related to the Casimir operator as∑

a

(Ja)2 =
n̂

2

(
1 +

n̂

2

)
|0⟩ satisfies aα|0⟩ = 0 for α = 1, 2 =⇒ the trivial representation of SU(2)

|jm⟩ = |1
2
(n1 + n2),

1

2
(n1 − n2)⟩ ∝

(
a1†

)n1
(
a2†

)n2 |0⟩.

Applications in LGT, e.g., loop-string-hadron formulation: SU(2) 5 and SU(3) 6,7
5I. Raychowdhury and J. R. Stryker, 2020, Phys. Rev. D arXiv: 1912.06133 (hep-lat)
6S. V. Kadam et al., 2023, Phys. Rev. D arXiv: 2212.04490 (hep-lat)
7S. V. Kadam et al., 2024, arXiv: 2407.19181 (hep-lat)

2 13

1912.06133
2212.04490
2407.19181


Introducing Schwinger fermion representation of SU(N)

cα† : α = 1, · · · , N are fermion creation operators that transform in the fundamental
representation of SU(N):

{cα, cβ} = {cα†, cβ†} = 0, {cα, cβ†} = δαβ .

The generators of SU(N) are defined as Qa := cα†T a
αβc

β =⇒ [Qa, Qb] = ifabcQc, where
[T a, T b] = ifabcT c

The number operator k̂ :=
∑N

α=1 c
α†cα distinguishes different irreps of SU(N) (number of

boxes in the Young diagram ( · · · )T ), and is related to the Casimir operator as∑
a

(Qa)2 =
N + 1

2N
(N − k̂)k̂

|0⟩ satisfies cα|0⟩ = 0 for α = 1, 2 =⇒ the trivial representation

|α1 · · ·αk⟩ = cαk† · · · cα1†|0⟩.
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Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
− 1

4g2

∑
□

(W□ +W †
□) + t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.)

fermion hoppingelectric field magnetic field:

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

Traditional Qubit regularization

Hilbert space L2(G) =
⊕

λ∈ŜU(N)
Vλ ⊗ V ∗

λ

(Peter-Weyl theorem)
HQ :=

⊕
λ∈Q Vλ ⊗ V ∗

λ

(Symmetry is preserved)
Irreps ŜU(N): Young diagrams with

at most N − 1 rows
Q = {◦, , , , · · · , , }
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Reasons for Q-scheme (anti-symmetric)

Q = {◦, , , , · · · , , }

Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)

Smallest quadratic Casimir among each N-ality: minimize g2

2

(
La2 +Ra2

)
Anti-symmetric representations: formulation using Schwinger fermions
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Schwinger fermion representation of the link variables

Link algebra:

[La
i , L

b
j ] = ifabcLc

iδij , [Ra
i , R

b
j ] = ifabcRc

iδij , [La
i , R

b
j ] = 0,

[La
i , U

αβ
jk ] = −T a

αγU
γβ
jk δij , [Ra

i , U
αβ
jk ] = Uαγ

jk T
a
γβδik,

Each link is made of two Schwinger fermions lα†, rα† : α = 1, · · · , N

{lα, lβ†} = δαβ , {lα, lβ} = {lα†, lβ†} = 0,

{rα, rβ†} = δαβ , {rα, rβ} = {rα†, rβ†} = 0,

{lα, rβ†} = {lα†, rβ} = {lα, rβ} = {lα†, rβ†} = 0,

Schwinger fermion representation of the link variables:

La = lα†T a
αβl

β , Ra = rα†T a
αβr

β , Uαβ = lα
1√
k̂lk̂r

rβ†

Peter-Weyl theorem, or conservation of electric flux =⇒ kl + kr = N .
|kl = N ; kr = 0⟩ ≡ |kl = 0; kr = N⟩.
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Schwinger fermion representation of the KS Hamiltonian

Kogut-Susskind Hamiltonian

H =
g2

2

∑
⟨i,j⟩

N + 1

N
(N − k̂)k̂ − 1

4g2

∑
□

(W□ +W †
□) + t

∑
⟨i,j⟩

(cα†i lαi )
1√
k̂li k̂rj

(rβ†j cβj ) + h.c.

fermion hoppingelectric field magnetic field:

where

W□ = lα1
1

1√
k̂l1 k̂r2

rα2†
2 lα2

2

1√
k̂l2 k̂r3

rα3†
3 lα3

3

1√
k̂l3 k̂r4

rα4†
4 lα4

4

1√
k̂l4 k̂r1

rα1†
1

Advantages:

manifestly gauge invariant on each site. Gauss law: conservation of quark number plus
Schwinger fermion number mod N .
gauge invariant operators on each site are bosonic

7 13



Gauge invariant operators

C†
x,µ := cα†x fαx,µ, Fx,µν := fα†x,µf

α
x,ν .

F †
x,µν = Fx,νµ and Fx,µµ = F †

x,µµ = k̂x,µ by definition.
These operators satisfies

[Cµ, C
†
ν ] = Fµν − n̂δµν .

[Fµν , Fρσ] = Fµσδνρ − Fρνδµσ

[Fµν , Cρ] = Cµδνρ,

[Fµν , C
†
ρ] = −C†

νδµρ,

which is the algebra of U(2d+ nf ). (l = F ⊕ n̂ and p = C
form a Cartan decomposition.)

fx,µfx,−µ

fx,ν

fx,−ν

fx+µ,−µfx−µ,µ

fx+ν,−ν

fx−ν,ν
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Where is N?

Since the Hamiltonian can be written solely in terms of gauge invariant operators Cµ and Fµν

that form U(2d+Nf ) algebra, where is the information of the original gauge group SU(N)?

Answer: It is hidden in the representation!

(C†
µ)

N+1 = 0, (F †
µν)

N+1 = 0 when µ ̸= ν.

A trivial example:

Cµ = |µ⟩⟨0|, C†
µ = |0⟩⟨µ|, Fµν = |µ⟩⟨ν|,

Form a representation of the U(2d+ 1) algebra in the case of N = 1.
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Continuum theory and lattice theory

Full continuum theory

L =
1

2g̃2
trF 2 + ψ̄αi /Dψα +

∑
a

λaJa
LJ

a
R

Full lattice theory

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
+ t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.) + U

∑
i

ni(N − ni)

generalized Hubbard coupling
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Phase Diagram (2312.17734)

2 1 0 1 2
U

0

2

4

g2

Gapless Gapped

Phase Diagram
numerical results

Phase diagram

0

Gapless Gapped

Flow diagram
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IR central charge (2312.17734)
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2.1
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2.4

2.5

2.6

2.7

2.8

2.9

S

Entanglement Entropy at g2 = U = 0
numerical results
fitting

IR central charge via entanglement entropy:

S =
cIR
3

log
( L

πa
sin

πℓ

L

)
+ const.

between two subsystems with size ℓ and L− ℓ.

0.00 0.02 0.04 0.06 0.08 0.10
1/L

1.00

1.02

1.04

1.06

1.08

1.10

c I
R

cIR(L) at g2 = 0
U = 1
U = 0.5
U = 0
U = 0.1
U = 0 (g2 = 1)

Central charge extrapolation

cIR(∞) ranges from 0.9988(7) to 0.9998(9).
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Conclusions

Formulated SU(N) lattice gauge theories using Schwinger fermions.

Remarkably, the resulting theory can be expressed purely in terms of gauge-invariant
operators, which form a U(2d+Nf ) algebra.

This formulation applies to any SU(N) gauge group in any spacetime dimension.

Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space

References:
▶ 2112.02090: general idea of qubit regularization for SU(N) gauge theories.
▶ 2312.17734: phase analysis in the continuum and numerical check on the lattice.
▶ 2408.xxxxx: formulation of the theory using Schwinger fermions.
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The continuum theory of 2d QCD

SU(N) Yang-Mills theory coupled to single-flavor massless Dirac fermions

L0 =
1

2g̃2
trF 2 + ψ̄αi /Dψα

Symmetries:

g̃2 = 0: free fermion, O(2N)L ×O(2N)R chiral symmetry. (ψα = 1√
2
(ξ2α−1 − iξ2α))

g̃2 > 0: Gauge symmetry SU(N), SU(2)L × SU(2)R (N = 2); U(1)L ×U(1)R (N ≥ 3).

Bosonization:

g̃2 = 0: U(N)1 or SO(2N)1 WZW model. Central charge: c = N .
g̃2 > 0: SO(2N)1

/
SU(N)1 or U(N)1

/
SU(N)1 ∼= U(1)N coset WZW model.

Central charge: c = c(SO(2N)1)− c(SU(N)1) = N − (N − 1) = 1.
▶ N = 2: SO(4) ∼= SU(2)s × SU(2)c, coset is SU(2)1 WZW model in the charge sector.



Symmetries from the lattice

Continuum symmetries forbid any relevant or marginal couplings.
When regularizing the theory on the lattice using staggered fermions,
U(1)L ×U(1)R → U(1)× Zχ

2 (SU(2)L × SU(2)R → SU(2)× Zχ
2 for N = 2).

Zχ
2 forbids mass terms, but allows coupling between currents: Ja

L,R := 1
2ξ

T
L,RT

aξL,R

Full continuum theory

L =
1

2g̃2
trF 2 + ψ̄αi /Dψα +

∑
a

λaJa
LJ

a
R

N ≥ 3: two independent couplings: λ0 (Thirring coupling) and λc̃
N = 2: one independent coupling: λ0 = λc̃ = λc



RG flow

N ≥ 3:

dλ0
d lnµ

= −N − 1

2π
λ2c̃ ,

dλc̃
d lnµ

= − 1

Nπ
λ0λc̃,

N = 2:

dλc
d lnµ

= − 1

2π
λ2c .

Mixed anomaly between U(1) and Zχ
2

=⇒ the gapped phase should spontaneously
break Zχ

2 , the translation-by-one-site
symmetry on the lattice.

0

Gapless Gapped

RG flow for N = 2
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Phases in the strong coupling limit

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
+ t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.) + U

∑
i

ni(N − ni)

generalized Hubbard coupling

g2/t≫ 1:

1

2

(
La2
ij +Ra2

ij

)
|k⟩ = N + 1

2N
k(N − k)|k⟩,

gauge links prefer k = 0 (trivial rep)

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

Similar analysis for −U/t≫ 1.



Strong coupling expansion - spin-chain phase

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

When g2/t≫ 1 or −U/t≫ 1, treat hopping terms as a perturbation:

XXZ spin chain: Heff =
∑
⟨i,j⟩

J⊥(XiXj + YiYj) + Jz(ZiZj − 1)

where

J⊥ = (−1)N−1 N

2(N − 1)!

tN

(N+1
2N g2 + 2U)N−1

, Jz =
N

2(N − 1)

t2

N+1
2N g2 + 2U

When N = 2, |J⊥| = |Jz| (gapless) =⇒ SU(2) symmetry ↔ SU(2)1 WZW model.

When N > 2, |J⊥| < |Jz| (gapped, Néel) =⇒ U(1) symmetry ↔ U(1)N WZW model.



Strong coupling expansion - dimer phase

when U/t≫ 1, each site is forced to have one fermion
(N = 2)

↑ ↓ ↑ ↓ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↑

gapped, dimerized, doubly degenerate, expected from ’t
Hooft anomaly matching

Spin-chain phase

Dimer phase
(degenerate,

’t Hooft anomaly)
U

g2



Lattice model in the continuum RG flow

0

Dimer

Néel



Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

−U/t≫ 1: Raise links in-between to higher irreps,
confined

↑↓ ↑↓ ↑↓↑ ↓

String tension: Tk = g2
N + 1

2N
k(N − k).

−U/t≫ 1 or g2/t≫ 1:

String tension: Tk = g2
N + 1

2N
k(⌊N

2
⌋ − k).

=⇒ Deconfined for N = 2, 3

Deconfined

Confined

?

U

g2

Confinement diagram for N = 2, 3



Confining phase

0 2 4 6 8 10 12 14 16
r

5

0
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E 1

g2

5
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3
2
1
0

0.14
0.5

Energy as a function of the distance r between the test quarks at N = 2, k = 1 and L = 20 for U = −10.



String tensions at large U

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
g2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0T
String tensions at U = 4

Numerical results
Linear fit

T = 0.685(8)g2 + 0.239(5)

Strong coupling result: T = 0.75g2

Surprisingly, when g2 = 0, T > 0. (In
traditional theory, when g2 = 0 the gauge
field can be absorbed)
In the qubit regularization, electric field
term is generated by the hopping term in
the RG sense:

Hij = cα†i Uαβ
ij c

β
j + cβ†j (Uαβ

ij )†cαi

− 1

β
log(trf e

−βHij )

{
∝ 1 : traditional
∝ La2

ij +Ra2
ij : qubit
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Marginal operator, level crossing and critical point

SU(2)1 WZW has SU(2)L × SU(2)R symmetry
Lowest 5 states: (sL, sR) = (0, 0) and ( 12 ,

1
2 )

On the lattice: chiral symmetry is broken
λcJL · JR is allowed, can be tuned by U

SU(2)L × SU(2)R
broken−−−−→ SU(2)diag

(sL, sR) = (
1

2
,
1

2
) −→ stot = 1, 0

⟨JL · JR⟩ =
1

2
⟨(JL + JR)

2 − J2
L − J2

R⟩

=
1

2

(
stot(stot + 1)− sL(sL + 1)− sR(sR + 1))

λc is marginal, β-function:

dλc
d lnµ

= − 1

2π
λ2c

3 2 1 0 1 2 3
U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

Level crossing at g2 = 0
k = 0, stot = 0
k = , stot = 0
k = , stot = 1

DMRG: ITensora
aM. Fishman et al., 2022, SciPost Phys. Codebases



Critical point extrapolation in L

Uc(L) = Uc(∞) +AL−a

0.00 0.01 0.02 0.03
1/L2.4

7.0

7.5

8.0

8.5

U
c

1e 2

g2 = 0
fitting
numerical results

Uc(∞) = −0.08769(3)

4 6 8 10 12
L

0.01

0.10

1.00

|U
c(g

2 ,
L)

U
c(g

2 ,
)|

1e 1

g2

1
0
1
2
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4
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UV central charge
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Entanglement Entropy at g2 = 0, U = 1

UV central charge via entanglement entropy

S =
cUV

6
log

ξ

a
+ const.

ξ is correlation length.

10 100

0.4
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0.8

1.0

1.2

S

Massive phase
g2 = 0.5
g2 = 0
g2 = 2
g2 = 5

cUV = 1.737(6), 1.693(4), 1.66(1), 1.66(1)
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