Formulation of SU(N) Lattice Gauge Theories with Schwinger Fermions

Hanqing Liu

Based on 2112.02090, 2312.17734 and 2408.xxxxx

In collaboration with

Tanmoy Bhattacharya (LANL), Shailesh Chandrasekharan (Duke) and Rajan Gupta (LANL)

JULY 31, 2024

LA-UR-24-25481

1 Overview

- 2 Introducing Schwinger fermions
- 3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation
- 4 Numerical results for SU(2) QCD $_2$
- 5 Conclusions

- Goal: study QCD using lattice models with finite dimensional local Hilbert space
- Our approach: *qubit regularization*^{1,2,3,4} of traditional lattice models
- This talk: reformulate the theory using Schwinger fermions; reproduce the physics (IR and UV) of 2d SU(N) QCD

¹H. Singh and S. Chandrasekharan, 2019, *Phys. Rev. D* arXiv: 1905.13204 (hep-lat)
²T. Bhattacharya et al., 2021, *Phys. Rev. Lett.* arXiv: 2012.02153 (hep-lat)
³H. Liu and S. Chandrasekharan, 2022, *Symmetry* arXiv: 2112.02090 (hep-lat)
⁴S. Maiti et al., 2024, *PoS* arXiv: 2401.10157 (hep-lat)

- 2 Introducing Schwinger fermions
- 3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation
- 4 Numerical results for SU(2) QCD₂
- 5 Conclusions

1 Overview

2 Introducing Schwinger fermions

3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation

4 Numerical results for SU(2) QCD₂

5 Conclusions

Review of Schwinger boson representation of SU(2)

• $a^{\alpha^{\dagger}}: \alpha = 1, 2$ are boson creation operators that transform as an SU(2) doublet:

$$[a^{\alpha}, a^{\beta}] = [a^{\alpha \dagger}, a^{\beta \dagger}] = 0, \quad [a^{\alpha}, a^{\beta \dagger}] = \delta^{\alpha \beta},$$

• The generators of SU(2) are defined as $J^a := \frac{1}{2} a^{\alpha \dagger} \sigma^a_{\alpha \beta} a^{\beta} \implies [J^a, J^b] = i \varepsilon^{abc} J^c$

■ The number operator n̂ := a^{1†}a¹ + a^{2†}a² distinguishes different irreps of SU(2) (number of boxes in the Young diagram □□···□), and is related to the Casimir operator as

$$\sum_{a} (J^{a})^{2} = \frac{\hat{n}}{2} \left(1 + \frac{\hat{n}}{2} \right)^{2}$$

• $|0\rangle$ satisfies $a^{\alpha}|0\rangle = 0$ for $\alpha = 1, 2 \implies$ the trivial representation of SU(2)

$$|jm\rangle = |\frac{1}{2}(n_1 + n_2), \frac{1}{2}(n_1 - n_2)\rangle \propto (a^{1\dagger})^{n_1} (a^{2\dagger})^{n_2} |0\rangle.$$

Applications in LGT, e.g., loop-string-hadron formulation: SU(2) ⁵ and SU(3) ^{6,7}
 ⁵I. Raychowdhury and J. R. Stryker, 2020, Phys. Rev. D arXiv: 1912.06133 (hep-lat)
 ⁶S. V. Kadam et al., 2023, Phys. Rev. D arXiv: 2212.04490 (hep-lat)
 ⁷S. V. Kadam et al., 2024, arXiv: 2407.19181 (hep-lat)

2

Introducing Schwinger fermion representation of SU(N)

• $c^{\alpha \dagger} : \alpha = 1, \dots, N$ are fermion creation operators that transform in the fundamental representation of SU(N):

$$\{c^{\alpha},c^{\beta}\}=\{c^{\alpha\dagger},c^{\beta\dagger}\}=0,\quad \{c^{\alpha},c^{\beta\dagger}\}=\delta^{\alpha\beta}.$$

- The generators of SU(N) are defined as $Q^a := c^{\alpha \dagger} T^a_{\alpha \beta} c^{\beta} \implies [Q^a, Q^b] = i f^{abc} Q^c$, where $[T^a, T^b] = i f^{abc} T^c$
- The number operator k̂ := ∑^N_{α=1} c^{α†}c^α distinguishes different irreps of SU(N) (number of boxes in the Young diagram (□□···□)^T), and is related to the Casimir operator as

$$\sum_{a} (Q^{a})^{2} = \frac{N+1}{2N} (N-\hat{k})\hat{k}$$

• $|0\rangle$ satisfies $c^{\alpha}|0\rangle = 0$ for $\alpha = 1,2 \implies$ the trivial representation

$$|\alpha_1 \cdots \alpha_k\rangle = c^{\alpha_k \dagger} \cdots c^{\alpha_1 \dagger} |0\rangle.$$

1 Overview

- 2 Introducing Schwinger fermions
- 3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation
 - 4 Numerical results for ${
 m SU}(2)$ QCD $_2$
 - 5 Conclusions

Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

	Traditional	Qubit regularization
Hilbert space	$L^{2}(G) = \bigoplus_{\lambda \in \widehat{\mathrm{SU}(N)}} V_{\lambda} \otimes V_{\lambda}^{*}$ (Peter-Weyl theorem)	$\mathcal{H}_Q := igoplus_{\lambda \in Q} V_\lambda \otimes V_\lambda^*$ (Symmetry is preserved)
Irreps	${ m SU}(ar{N})$: Young diagrams with at most $N-1$ rows	$Q = \{\circ, \Box, \Box, \Box, \Box, \cdots, \Box, \Box\}$

Reasons for *Q*-scheme (anti-symmetric)

Contains all *N*-ality: string tensions at large distance are dictated by *N*-ality (screening)

- Smallest quadratic Casimir among each N-ality: minimize $\frac{g^2}{2}(L^{a2}+R^{a2})$
- Anti-symmetric representations: formulation using Schwinger fermions

Schwinger fermion representation of the link variables

Link algebra:

$$\begin{split} [L_i^a, L_j^b] &= \mathrm{i} f^{abc} L_i^c \delta_{ij}, \quad [R_i^a, R_j^b] = \mathrm{i} f^{abc} R_i^c \delta_{ij}, \quad [L_i^a, R_j^b] = 0, \\ [L_i^a, U_{jk}^{\alpha\beta}] &= -T_{\alpha\gamma}^a U_{jk}^{\gamma\beta} \delta_{ij}, \quad [R_i^a, U_{jk}^{\alpha\beta}] = U_{jk}^{\alpha\gamma} T_{\gamma\beta}^a \delta_{ik}, \end{split}$$

Each link is made of two Schwinger fermions $l^{lpha\dagger}, r^{lpha\dagger}: lpha=1,\cdots,N$

$$\begin{split} \{l^{\alpha}, l^{\beta\dagger}\} &= \delta^{\alpha\beta}, \quad \{l^{\alpha}, l^{\beta}\} = \{l^{\alpha\dagger}, l^{\beta\dagger}\} = 0, \\ \{r^{\alpha}, r^{\beta\dagger}\} &= \delta^{\alpha\beta}, \quad \{r^{\alpha}, r^{\beta}\} = \{r^{\alpha\dagger}, r^{\beta\dagger}\} = 0, \\ \{l^{\alpha}, r^{\beta\dagger}\} &= \{l^{\alpha\dagger}, r^{\beta}\} = \{l^{\alpha}, r^{\beta}\} = \{l^{\alpha\dagger}, r^{\beta\dagger}\} = 0, \end{split}$$

Schwinger fermion representation of the link variables:

$$L^{a} = l^{\alpha \dagger} T^{a}_{\alpha \beta} l^{\beta}, \quad R^{a} = r^{\alpha \dagger} T^{a}_{\alpha \beta} r^{\beta}, \quad U^{\alpha \beta} = l^{\alpha} \frac{1}{\sqrt{\hat{k}_{l} \hat{k}_{r}}} r^{\beta \dagger}$$

Peter-Weyl theorem, or conservation of electric flux $\implies k_l + k_r = N$. $|k_l = N; k_r = 0 \ge |k_l = 0; k_r = N >$.

Schwinger fermion representation of the KS Hamiltonian

Kogut-Susskind Hamiltonian

where

$$W_{\Box} = l_1^{\alpha_1} \frac{1}{\sqrt{\hat{k}_{l_1}\hat{k}_{r_2}}} r_2^{\alpha_2^{\dagger}} l_2^{\alpha_2} \frac{1}{\sqrt{\hat{k}_{l_2}\hat{k}_{r_3}}} r_3^{\alpha_3^{\dagger}} l_3^{\alpha_3} \frac{1}{\sqrt{\hat{k}_{l_3}\hat{k}_{r_4}}} r_4^{\alpha_4^{\dagger}} l_4^{\alpha_4} \frac{1}{\sqrt{\hat{k}_{l_4}\hat{k}_{r_1}}} r_1^{\alpha_1^{\dagger}}$$

Advantages:

- manifestly gauge invariant on each site. Gauss law: conservation of quark number plus Schwinger fermion number mod *N*.
- gauge invariant operators on each site are bosonic

Gauge invariant operators

$$C_{x,\mu}^{\dagger} := c_x^{\alpha\dagger} f_{x,\mu}^{\alpha}, \quad F_{x,\mu\nu} := f_{x,\mu}^{\alpha\dagger} f_{x,\nu}^{\alpha}.$$

$$F_{x,\mu\nu}^{\dagger}=F_{x,\nu\mu}$$
 and $F_{x,\mu\mu}=F_{x,\mu\mu}^{\dagger}=\hat{k}_{x,\mu}$ by definition. These operators satisfies

$$[C_{\mu}, C_{\nu}^{\dagger}] = F_{\mu\nu} - \hat{n}\delta_{\mu\nu}.$$

$$[F_{\mu\nu}, F_{\rho\sigma}] = F_{\mu\sigma}\delta_{\nu\rho} - F_{\rho\nu}\delta_{\mu\sigma}$$

$$[F_{\mu\nu}, C_{\rho}] = C_{\mu}\delta_{\nu\rho},$$

$$[F_{\mu\nu}, C_{\rho}^{\dagger}] = -C_{\nu}^{\dagger}\delta_{\mu\rho},$$

which is the algebra of U(2d + n_f). ($\mathfrak{l} = F \oplus \hat{n}$ and $\mathfrak{p} = C$ form a Cartan decomposition.)

Since the Hamiltonian can be written solely in terms of gauge invariant operators C_{μ} and $F_{\mu\nu}$ that form $U(2d + N_f)$ algebra, where is the information of the original gauge group SU(N)?

Since the Hamiltonian can be written solely in terms of gauge invariant operators C_{μ} and $F_{\mu\nu}$ that form $U(2d + N_f)$ algebra, where is the information of the original gauge group SU(N)?

Answer: It is hidden in the representation!

$$(C^{\dagger}_{\mu})^{N+1} = 0, \; (F^{\dagger}_{\mu\nu})^{N+1} = 0 \quad \text{when} \; \mu \neq \nu.$$

A trivial example:

$$C_{\mu} = |\mu\rangle\langle 0|, \quad C_{\mu}^{\dagger} = |0\rangle\langle\mu|, \quad F_{\mu\nu} = |\mu\rangle\langle\nu|,$$

Form a representation of the U(2d + 1) algebra in the case of N = 1.

1 Overview

- 2 Introducing Schwinger fermions
- 3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation
- 4 Numerical results for SU(2) QCD₂

5 Conclusions

Continuum theory and lattice theory

Full continuum theory

$$\mathcal{L} = \frac{1}{2\tilde{g}^2} \operatorname{tr} F^2 + \bar{\psi}^{\alpha} \mathrm{i} \not{D} \psi^{\alpha} + \sum_a \lambda^a J_L^a J_R^a$$

Full lattice theory

generalized Hubbard coupling

$$H = \frac{g^2}{2} \sum_{\langle i,j \rangle} \left(L_{ij}^{a2} + R_{ij}^{a2} \right) + t \sum_{\langle i,j \rangle} \left(c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + \text{h.c.} \right) + \frac{U \sum_i n_i (N - n_i)}{U \sum_i n_i (N - n_i)}$$

Phase diagram

IR central charge (2312.17734)

IR central charge via entanglement entropy:

$$S = \frac{c_{\rm IR}}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi \ell}{L}\right) + {\rm const.}$$

between two subsystems with size ℓ and $L - \ell$.

Central charge extrapolation

 $c_{\rm IR}(\infty)$ ranges from 0.9988(7) to 0.9998(9).

1 Overview

- 2 Introducing Schwinger fermions
- 3 Hamiltonian LGT, qubit regularization, and Schwinger fermion formulation
- 4 Numerical results for SU(2) QCD $_2$
- 5 Conclusions

- Formulated SU(N) lattice gauge theories using Schwinger fermions.
- Remarkably, the resulting theory can be expressed purely in terms of gauge-invariant operators, which form a $U(2d + N_f)$ algebra.
- This formulation applies to any SU(N) gauge group in any spacetime dimension.
- Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space
- References:
 - ▶ 2112.02090: general idea of qubit regularization for SU(N) gauge theories.
 - ▶ 2312.17734: phase analysis in the continuum and numerical check on the lattice.
 - ▶ 2408.xxxxx: formulation of the theory using Schwinger fermions.

THANKS FOR ATTENTION!

6 The continuum theory of 2d QCD and its bosonization

- 7 Strong coupling analysis of phases and confinement
- 8 Numerical results for the critical physics

The continuum theory of 2d QCD

 $\mathrm{SU}(N)$ Yang-Mills theory coupled to single-flavor massless Dirac fermions

$$\mathcal{L}_0 = rac{1}{2 ilde{g}^2} \operatorname{tr} F^2 + ar{\psi}^lpha \mathrm{i} D \!\!\!\!/ \psi^lpha$$

Symmetries:

- $\tilde{g}^2 = 0$: free fermion, $O(2N)_L \times O(2N)_R$ chiral symmetry. $(\psi^{\alpha} = \frac{1}{\sqrt{2}}(\xi^{2\alpha-1} i\xi^{2\alpha}))$
- $\tilde{g}^2 > 0$: Gauge symmetry SU(N), SU(2)_L × SU(2)_R (N = 2); U(1)_L × U(1)_R (N ≥ 3).

Bosonization:

- $\tilde{g}^2 = 0$: U(N)₁ or SO(2N)₁ WZW model. Central charge: c = N.
- $\begin{array}{l} \widetilde{g}^2 > 0: \operatorname{SO}(2N)_1 / \operatorname{SU}(N)_1 \text{ or } \operatorname{U}(N)_1 / \operatorname{SU}(N)_1 \cong \operatorname{U}(1)_N \text{ coset WZW model.} \\ \text{Central charge: } c = c(\operatorname{SO}(2N)_1) c(\operatorname{SU}(N)_1) = N (N 1) = 1. \end{array}$
 - ▶ N = 2: SO(4) \cong SU(2)_s × SU(2)_c, coset is SU(2)₁ WZW model in the charge sector.

Symmetries from the lattice

- Continuum symmetries forbid any relevant or marginal couplings.
- When regularizing the theory on the lattice using staggered fermions, $U(1)_L \times U(1)_R \rightarrow U(1) \times \mathbb{Z}_2^{\chi}$ (SU(2)_L × SU(2)_R \rightarrow SU(2) × \mathbb{Z}_2^{χ} for N = 2). \mathbb{Z}_2^{χ} forbids mass terms, but allows coupling between currents: $J_{L,R}^{\alpha} := \frac{1}{2} \xi_{L,R}^T T^a \xi_{L,R}$

Full continuum theory

$$\mathcal{L} = \frac{1}{2\tilde{g}^2} \operatorname{tr} F^2 + \bar{\psi}^{\alpha} \mathrm{i} \not\!\!D \psi^{\alpha} + \sum_a \lambda^a J_L^a J_R^a$$

- $N \geq 3$: two independent couplings: λ_0 (Thirring coupling) and $\lambda_{\tilde{c}}$
- N = 2: one independent coupling: $\lambda_0 = \lambda_{\tilde{c}} = \lambda_c$

RG flow

$$\blacksquare$$
 $N \ge 3$

$$\begin{split} \frac{\mathrm{d}\lambda_0}{\mathrm{d}\ln\mu} &= -\frac{N-1}{2\pi}\lambda_{\tilde{c}}^2,\\ \frac{\mathrm{d}\lambda_{\tilde{c}}}{\mathrm{d}\ln\mu} &= -\frac{1}{N\pi}\lambda_0\lambda_{\tilde{c}}, \end{split}$$

$$\blacksquare N = 2:$$

$$\frac{\mathrm{d}\lambda_c}{\mathrm{d}\ln\mu} = -\frac{1}{2\pi}\lambda_c^2.$$

Mixed anomaly between U(1) and \mathbb{Z}_2^{χ} \implies the gapped phase should spontaneously break \mathbb{Z}_2^{χ} , the translation-by-one-site symmetry on the lattice.

6 The continuum theory of 2d QCD and its bosonization

7 Strong coupling analysis of phases and confinement

8 Numerical results for the critical physics

Phases in the strong coupling limit

generalized Hubbard coupling

$$H = \frac{g^2}{2} \sum_{\langle i,j \rangle} \left(L_{ij}^{a2} + R_{ij}^{a2} \right) + t \sum_{\langle i,j \rangle} \left(c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + \text{h.c.} \right) + \frac{U \sum_i n_i (N - n_i)}{U \sum_i n_i (N - n_i)}$$

 $g^2/t \gg 1$:

$$\frac{1}{2} \left(L_{ij}^{a2} + R_{ij}^{a2} \right) |k\rangle = \frac{N+1}{2N} k(N-k) |k\rangle,$$

gauge links prefer k = 0 (trivial rep)

$$\begin{array}{c} & & \\$$

Similar analysis for $-U/t \gg 1$.

Strong coupling expansion - spin-chain phase

When $g^2/t \gg 1$ or $-U/t \gg 1$, treat hopping terms as a perturbation:

$$XXZ$$
 spin chain: $H_{\text{eff}} = \sum_{\langle i,j \rangle} J_{\perp}(X_iX_j + Y_iY_j) + J_z(Z_iZ_j - 1)$

where

$$J_{\perp} = (-1)^{N-1} \frac{N}{2(N-1)!} \frac{t^N}{(\frac{N+1}{2N}g^2 + 2U)^{N-1}}, \quad J_z = \frac{N}{2(N-1)} \frac{t^2}{\frac{N+1}{2N}g^2 + 2U}$$

When N = 2, |J_⊥| = |J_z| (gapless) ⇒ SU(2) symmetry ↔ SU(2)₁ WZW model.
 When N > 2, |J_⊥| < |J_z| (gapped, Néel) ⇒ U(1) symmetry ↔ U(1)_N WZW model.

Strong coupling expansion - dimer phase

when $U/t \gg 1$, each site is forced to have one fermion (N = 2)

gapped, dimerized, doubly degenerate, expected from 't Hooft anomaly matching

Lattice model in the continuum RG flow

Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

 $-U/t \gg$ 1: Raise links in-between to higher irreps, confined

 \implies Deconfined for N=2,3

Confinement diagram for N=2,3

Confining phase

Energy as a function of the distance r between the test quarks at N = 2, k = 1 and L = 20 for U = -10.

String tensions at large U

$$T = 0.685(8)g^2 + 0.239(5)$$

- Strong coupling result: $T = 0.75g^2$
- Surprisingly, when $g^2 = 0$, T > 0. (In traditional theory, when $g^2 = 0$ the gauge field can be absorbed)
- In the qubit regularization, electric field term is generated by the hopping term in the RG sense:

$$H_{ij} = c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + c_j^{\beta \dagger} (U_{ij}^{\alpha \beta})^{\dagger} c_i^{\alpha}$$

 $-\frac{1}{\beta} \log(\operatorname{tr}_{f} e^{-\beta H_{ij}}) \begin{cases} \propto \mathbb{1} &: \text{traditional} \\ \propto L_{ij}^{a2} + R_{ij}^{a2} : \text{qubit} \end{cases}$

6 The continuum theory of 2d QCD and its bosonization

- 7 Strong coupling analysis of phases and confinement
- 8 Numerical results for the critical physics

Marginal operator, level crossing and critical point

- SU(2)₁ WZW has SU(2)_L × SU(2)_R symmetry Lowest 5 states: $(s_L, s_R) = (0, 0)$ and $(\frac{1}{2}, \frac{1}{2})$
- On the lattice: chiral symmetry is broken $\lambda_c J_L \cdot J_R$ is allowed, can be tuned by U

$$\begin{split} \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R &\xrightarrow{\mathrm{broken}} \mathrm{SU}(2)_{\mathrm{diag}} \\ (s_L, s_R) &= (\frac{1}{2}, \frac{1}{2}) \longrightarrow s_{\mathrm{tot}} = 1, 0 \\ \langle J_L \cdot J_R \rangle &= \frac{1}{2} \langle (J_L + J_R)^2 - J_L^2 - J_R^2 \rangle \\ &= \frac{1}{2} \big(s_{\mathrm{tot}}(s_{\mathrm{tot}} + 1) - s_L(s_L + 1) - s_R(s_R + 1)) \end{split}$$

 λ_c is marginal, β -function:

$$\frac{\mathrm{d}\lambda_c}{\mathrm{d}\ln\mu} = -\frac{1}{2\pi}\lambda_c^2$$

DMRG: ITensor^a

^aM. Fishman et al., 2022, SciPost Phys. Codebases

Critical point extrapolation in L

UV central charge

UV central charge via entanglement entropy

$$S = \frac{c_{\rm UV}}{6} \log \frac{\xi}{a} + {\rm const}$$

 ξ is correlation length.

 $c_{\rm UV} = 1.737(6), 1.693(4), 1.66(1), 1.66(1)$