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Critical slowing down in lattice gauge theory

Long autocorrelation times characterize several observables when a → 0

Typical example are topological observables: for a → 0 sectors characterized by different values of the topological charge
Q emerge

Using standard MCMC algorithms the transition between these sectors is strongly suppressed

This talk: focus on SU(3) in 4 dimensions

Update algorithm of choice: 1 heat-bath step + 4
over-relaxation steps

Objective: mitigate freezing at β = 6.5 (r0/a ∼ 11)

τint(Q
2) ∼ 103
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Re-framing critical slowing down: flowing from one distribution to the other

Flow-based approach

mapping between the target p(ϕ) and some tractable distribution q0(z)

→ novel approach to fight critical slowing down

Lots of progress in Normalizing Flows in the last 5 years!

→ see R. Abbott’s and K. Javad’s talks in this session
+ Tej’s plenary from Lattice23

However: NFs do not appear to scale well with the volume (i.e. with the degrees of freedom)

But: same approach is possible stochastically! → better scaling?
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Out-of-equilibrium Monte Carlo evolutions



Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

▶ c(n) is a parameter of the action Sc(n) of the model

▶ start at equilibrium from a distribution q0 = e−Sc(0)/Z0, the prior

▶ nstep intermediate steps

▶ at each step: MC update with transition probability Pc(n)(Un → Un+1)

▶ Pc(n) changes along the evolution according to the protocol c(n)

▶ end at the target probability distribution p = e
−Sc(nstep)/Znstep ≡ e−S/Z

”forward” transition probability

Pf [U0, . . . ,U] =

nstep∏
n=1

Pc(n)(Un−1 → Un)
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Crooks’ theorem

Crooks’ theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
=

q0(U0)
∏nstep

n=1 Pc(n)(Un−1 → Un)

p(Unstep )
∏nstep

n=1 Pc(n)(Un → Un−1)
= exp(W −∆F )

with the generalized work

W =

nstep−1∑
n=0

{
Sc(n+1) [Un]− Sc(n) [Un]

}
and the free energy difference

exp(−∆F ) =
Zc(nstep)

Zc(0)
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Jarzynski’s equality for MCMC

Integrating over all paths gives∫
[dU0 . . . dUnstep ]q0(U0)Pf [U0, . . . ,Unstep ] exp(−(W −∆F )) = 1

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

⟨exp (−W )⟩f = exp(−∆F ) =
Z

Z0

Ratio of partition functions computed directly with an average over ”forward” non-equilibrium evolutions
→ see talk by A. Bulgarelli (Tue 14:35)

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

⟨W ⟩f ≥ ∆F

→ Second Law of Thermodynamics

The same derivation holds if you want to compute v.e.v. of
an observable for the target distribution p

⟨O⟩ =
⟨O exp(−W )⟩f
⟨exp(−W )⟩f

= ⟨O exp(−Wd )⟩f
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A non-equilibrium paradigm to perform MCMC
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How far are we from equilibrium?

However we can measure the similarity of forward and reverse processes

D̃KL(q0Pf∥pPr) =

∫
[dU0 . . . dU] q0(U0)Pf [U0, . . . ,U] log

q0(U0)Pf [U0, . . . ,U]

p(U)Pr[U,Unstep−1, . . . ,U0]

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of Thermodynamics!

→ measure of how reversible the process is!

Upper bound for the divergence used for NFs

D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr)

Another figure of merit is the Effective Sample Size

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f
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Out-of-equilibrium evolutions in β for SU(3) in 4 dimensions



Non-equilibrium evolutions in β

Evolution from thermalized MC at β0 to a target β

q0 ≃ e−Sβ(0) → e−Sβ(1) → · · · → p ≃ e
−Sβ(nstep)

Objectives

▶ Analyze scaling with volume (L/a)4

▶ Set MCMC standard for flow-based
approach

▶ No topology yet (charge not frozen yet)

Setup

▶ Increasingly large lattices, from L/a = 10 to
L/a = 20

▶ ”Jump” in β:

6.02 → 6.178

corresponding to (1.8fm)4 → (1.4fm)4 for
L/a = 20

This work: inverse coupling increased linearly

β(n) = β0 + (β − β0)
n

nstep
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Evolutions in β: volume scaling
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Stochastic Normalizing Flows



SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC

GE layer
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U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

The (generalized) work now is

W =

nstep−1∑
n=0

Sc(n+1)(gn(Un))− Sc(n)(gn(Un))︸ ︷︷ ︸
stochastic

− log |det Jn(Un)|︸ ︷︷ ︸
deterministic

▶ use gauge-equivariant layers to effectively decrease nstep

▶ how to do training? advantages from the architecture

▶ same scaling with the volume?
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2021] and the link-level flow used in [Abbott et al.;

2023]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003] with masks to make it invertible (and compute
log J)

U′
µ(x) = gl (Uµ(x)) = exp

(
Q

(l)
µ (x)

)
Uµ(x)

with the algebra-valued

Q
(l)
µ (x) = 2

[
Ω

(l)
µ (x)

]
TA

Ωµ(x) = Cµ(x)︸ ︷︷ ︸
frozen

U†
µ(x)︸ ︷︷ ︸

active

Sum of frozen staples

Cµ(x) =
∑
ν ̸=µ

ρ Sµν(x)︸ ︷︷ ︸
staple
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Learning ρ

Architecture: (1 gauge-equivariant + 1 full MC update) ×nstep

Training: minimizing D̃KL(q0Pf∥pPr) = ⟨W ⟩f + const

Short trainings: 200-1000 epochs

Memory issues for large nstep and large volumes

Practical solution: train each layer separately during the
non-equilibrium evolution → reminiscent of CRAFT
[Matthews at al.; 2022]

Heavy use of transfer learning for each β0 → β evolution:

▶ training only at small volumes

▶ training only with small nstep: global interpolation of ρ

No retraining!

0 50 100 150 200 250
layer index

0.0000

0.0001

0.0002

0.0003

ρ

L/a = 12, β = 5.756→ 5.877
nstep = 16

nstep = 32

nstep = 64

nstep = 128

nstep = 256

Alessandro Nada (UniTo) Sampling SU(3) with SNFs 31/07/2024 13



Learning ρ

Architecture: (1 gauge-equivariant + 1 full MC update) ×nstep

Training: minimizing D̃KL(q0Pf∥pPr) = ⟨W ⟩f + const

Short trainings: 200-1000 epochs

Memory issues for large nstep and large volumes

Practical solution: train each layer separately during the
non-equilibrium evolution → reminiscent of CRAFT
[Matthews at al.; 2022]

Heavy use of transfer learning for each β0 → β evolution:

▶ training only at small volumes

▶ training only with small nstep: global interpolation of ρ

No retraining!

0 50 100 150 200 250
layer index

0.0000

0.0001

0.0002

0.0003

ρ

L/a = 12, β = 5.756→ 5.877
nstep = 16

nstep = 32

nstep = 64

nstep = 128

nstep = 256

Alessandro Nada (UniTo) Sampling SU(3) with SNFs 31/07/2024 13



Improvements over purely stochastic approach
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Improvements over purely stochastic approach
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Improvements over purely stochastic approach
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SNF evolutions in β: volume scaling
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Conclusions and future prospects

Stochastic approach guarantees a clear scaling with the degrees of freedom

nstep ∼ d.o.f. → fixed D̃KL or ESS

while providing a thermodynamic understanding of the flow

Overall strategy

systematically improve on stochastic approach by machine-learning deterministic transformations between MC steps

Future improvements

Better protocols (huge literature from non-eq SM):
only linear protocols were used in this work!

Better and deeper layers: include larger loops beyond
the plaquette + ρ as a neural network [Abbott et al.;

2023]

Future implementations

Implement SNF for evolutions in the BC

→ see poster by D. Vadacchino

Push SNFs/evolutions in β at finer lattice spacings
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Thank you for your attention!
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Applications of Jarzynski’s equality in Lattice Field Theory

Several applications in the last 8 years!

▶ calculation of the interface free-energy in the Z2 gauge theory [Caselle et al.; 2016]

▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 2018]

▶ renormalized coupling for SU(N) YM theories [Francesconi et al.; 2020]

▶ entanglement entropy [Bulgarelli and Panero; 2023]

▶ connection with Stochastic Normalizing Flows: ϕ4 scalar field theory [Caselle et al.; 2022] and Nambu-Goto effective
string model [Caselle et al.; 2023]

▶ Topological unfreezing for CP(N − 1) model [Bonanno et al.; 2023]
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The effective sample size

Effective Sample Size: defined in general as the ratio between the ”theoretical” variance and the actual variance of the NE
observable

Var(O)NE

n
=

Var(O)p

nESS

but difficult to compute

We use the (customary) approximate estimator

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

=
1

⟨exp(−2Wd )⟩f

Easy to understand in terms of the variance of exp(−W ):

Var(exp(−W )) =

(
1

ˆESS
− 1

)
exp(−2∆F ) ≥ 0

which leads to
0 < ˆESS ≤ 1
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Non-equilibrium strategies for critical slowing down in SU(3)

How to sample frozen topological observables at βtarget on a L4 lattice?

Evolution in the boundary conditions Evolution in β

Prior thermalized Markov Chain at βtarget thermalized Markov Chain at β0 < βtarget

with OBC on a L3d defect (a0 > atarget)

Protocol Gradually switch on PBC Gradually increase β (compress the volume)

d.o.f. ∼ (Ld/a)
3 ∼ (L/a)4

Intermediate sampling — possible at any intermediate β
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SNF evolutions in β: volume scaling
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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A connection to traditional reweighting

A typical reweighting procedure is meant to sample a distribution p using a (close enough) distribution q0. It can be
written as

⟨O⟩RW =
⟨O(ϕ) exp(−∆S)⟩q0

⟨exp(−∆S)⟩q0

It is just Jarzynski’s equality for nstep = 1, see the work

W =

nstep−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
= ∆S(ϕ0)

with ϕ0 sampled from q0

▶ It’s important to note that there is no issue with the fact that ∆S itself can be large

▶ The real issue is that the distribution of ∆S (and in general of W ) can lead to an extremely poor estimate of ∆F →
highly inefficient sampling

▶ The exponential average can be tricky when very far from equilibrium!
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A common framework: Stochastic Normalizing Flows

Jarzynski’s equality is the same formula used to extract Z in NFs

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼qN = ⟨exp(−W )⟩f

The exponent of the weight is always of the form (note that for NFs ⟨. . . ⟩ϕ∼qN
= ⟨. . . ⟩f)

W (ϕ0, . . . , ϕN) = S(ϕN)− S0(ϕ0)− Q(ϕ1, . . . , ϕN)

Normalizing Flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕN

”Q” = log J =

N−1∑
n=0

log |det Jn(ϕn)|

stochastic non-equilibrium evolutions

ϕ0

Pc(1)→ ϕ1

Pc(2)→ . . .
Pc(N)→ ϕN

Q =

N−1∑
n=0

Sc(n+1)(ϕn+1)− Sc(n+1)(ϕn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

ϕ0 → g1(ϕ0)
Pc(1)→ ϕ1 → g2(ϕ1)

Pc(2)→ . . .
Pc(N)→ ϕN

Q =

N−1∑
n=0

Sc(n+1)(ϕn+1)− Sc(n+1)(gn(ϕn)) + log |det Jn(ϕn)|
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f

evolution in βg (inverse coupling) → changes lattice spacing a → changes temperature T = 1/(aNt)

Prior: thermalized Markov chain at a certain β
(0)
g

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski’s equality
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Large volumes (up to 1603 × 10) and very fine lattice spacings β ≃ 7
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