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Normalizing Flows

Normalizing flows

Learned change of variables f maps density r(z)

q(ϕ) = | det Jf (f (ϕ))|r(f (ϕ))

r(z), f −1(z), | det Jf (z)| tractable =⇒ q(ϕ) tractable

Given (known) target p(ϕ), train f so q ≈ p

Can apply corrections for exact/unbiased sampling
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[Albergo et al., 1904.12072]

https://arxiv.org/abs/1904.12072


Normalizing Flows

Normalizing flows & QCD

Modern effort began w/ scalar fields [Albergo et al., 1904.12072]

Required significant effort to get to QCD

Working with U(1) & SU(3), gauge symmetry, pseudofermions, . . .

Have tools for QCD [Abbott et al., 2208.03832]

Outline today

Novel applications past accelerated sampling
More recent work on improving models
Scaling on Aurora (supercomputer)
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https://arxiv.org/abs/1904.12072
https://arxiv.org/abs/2208.03832


Normalizing Flows

Novel Applications of Flows

If f ≈ identity (can force), then f (U) and U are correlated

=⇒ correlated differences, improved uncertainties

Derivatives w/r/t action params
S 7→ S + αδS

d ⟨O(U)⟩α
dα

≈
〈O(f (U))−O(U)

∆α

〉
α=0

E.g. Feyman-Hellman, continuum limit
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[Abbott et al., 2401.10874]

https://arxiv.org/abs/2401.10874


Normalizing Flows

Feynman-Hellman Example

Gluon momentum fraction (bare):

⟨x⟩lattg = − 2

3Mπ

dMπ

dα
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[Abbott et al., 2401.10874]

https://arxiv.org/abs/2401.10874


Normalizing Flows

Dynamical Feynman-Hellman

Gluon momentum fraction (bare):

⟨x⟩lattg = − 2

3Mπ

dMπ

dα
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Twisted mass fermions
mπ ∼ 500 MeV
L3 × T = 123 × 24
a = 0.1 fm



Normalizing Flows

Model improvements

Two main architectures: spectral & residual

See [Abbott et al, 2305.02402]

Many improvements to both

Diagonal features, learned active loops, initialization, . . .
General theme: more gauge equivariant information

E.g. convolutions → parallel transport
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https://arxiv.org/abs/2305.02402


Normalizing Flows

Learned active loops

Need to choose “active loop” per gauge link
Usually plaquette, 2× 1 loop

Idea: use learned linear combination of possible loops
Constructed w/ neural net, similar to gauge-equivariant networks
[Favoni et al., 2012.12901]

Small test on 44 lattice, β = 2, 4d SU(3):
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https://arxiv.org/abs/2012.12901


Normalizing Flows

Scaling On Aurora

Aurora is an exascale machine at Argonne

Significant software effort

Porting/checking code on Intel GPUs ✓
Distributing model + fields over multiple GPUs ✓

Note: training is very memory intensive

Model scaling to O(10, 000) GPUs – ongoing
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Normalizing Flows

Scaling on Aurora (continued)

Significantly larger models, ∼ 109–1010 parameters

Current models ∼ 106–107 parameters

Target: dynamical QCD, moderate size lattices

Note: scaling ML models is highly nonintuitive, context-dependent

See [Abbott et al., 2211.07541] for a full discussion

GPT-1 (117 million parameters)
Lattice QCD is on and in the bag’s
not mine, ”ben said. he was lying on
the couch, . . .

GPT 3.5 (∼ 175 billion parameters)
Lattice QCD is a numerical
approach used in theoretical physics
to study the strong interaction
between quarks and gluons, which
are the fundamental constituents of
protons, neutrons, and other hadrons.

Ryan Abbott (MIT) Progress in Normalizing Flows July 31, 2024 11 / 12

https://arxiv.org/abs/2211.07541


Normalizing Flows

Conclusions

Novel applications of flows (ab)using correlations

Learned active loops among many improvements for 4d SU(3) flows

Upcoming/ongoing scaling on Aurora

Thanks! Questions?
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Backup

Backup
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Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Use of Flow

Direct Sampling (Independence Metropolis)

HMC on trivialized distribution [Lüscher 0907.5491]

Generalize proposal distribution [Foreman et al., 2112.01582]

Subdomain updates [Finkenrath, 2201.02216]

Stochastic Normalizing Flows [Wu et al. 2002.0670]

CRAFT [Matthews et al. 2201.13117]
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https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/2112.01582
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2002.06707
https://arxiv.org/abs/2201.13117


Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Architecture Choices

Choice of coupling layers (spectral, residual, continuous)

Choice of Neural networks (CNN, fully-connected, gauge-equivariant)

Gauge-equivariant networks [Favoni et al., 2012.12901]

Choice of invariant context passed to networks

Size of model (# layers, NN sizes)
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https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/2012.12901


Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Training Choices

Optimizer (Adam, SGD, higher-order optimizers)

Choice of Loss (reverse/forward KL, MSE, ...)

Computation of gradients (path gradients/control variates)

Hyperparameter choices (batch size, learning rate)

Hyperparameter scheduling

Volume chosen for training
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https://arxiv.org/abs/2211.07541


Backup

Exponential Volume Scaling

For L/ξ ≫ 1, ξ = correlation length, direct volume transfer

ESS(V ) = ESS(V0)
V /V0

Prevents direct sampling in thermodynamic limit L/ξ → ∞
Does not apply to continuum limit L/ξ ∼ mπL fixed, ξ/a → ∞
Typically 4 ≲ mπL ≲ 10 =⇒ no in principle issue
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Backup

Spectral Flows

Goal: h(ΩXΩ†) = Ωh(X )Ω†

Conjugation invariant data ⇔ eigenvalues

Diagonalize X ∈ SU(N) via eigenbasis V :

X = V

e iθ1

. . .

e iθN

V † 7→ V

e iθ
′
1

. . .

e iθ
′
N

V †

Define h : SU(N) → SU(N) by action on {θ1, . . . , θN}
Need to be careful about order ⇒ choose canonical order
Note: θk not independent,

∏
k e

iθk = detX = 1 ⇒ remove θN
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Backup

Dynamical Feynman Hellman - Costs
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Caveat: flow code is not
heavily optimized



Backup

Unbiased sampling

Independence Metropolis: accept ϕ → ϕ′ ∼ q(ϕ′) with probability

Paccept(ϕ → ϕ′) = min

(
1,

p(ϕ′)
p(ϕ)

q(ϕ)

q(ϕ′)

)
Hybrid methods

Alternate HMC/flow updates
HMC on trivialized distribution [Lüscher 0907.5491]
Subdomain updates [Finkenrath, 2201.02216]
CRAFT/Annealed Importance Sampling [Matthews et al. 2201.13117]
. . .
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https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2201.13117


Gauge-Equivariant Flows

SU(N)-Equivariant Flows

Two types here
Spectral flows - transform untraced plaquettes

Reference: [Boyda et al., 2008.05456]

Residual flows - parametrized Wilson flow/stout smearing step

Reference: [Abbott et al., 2304.XXXXX] (to appear)

Both based on active/frozen split
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https://arxiv.org/abs/2008.05456


Gauge-Equivariant Flows

Spectral Flows

Transform untraced plaquette Pµν

Under gauge transformation Ω(x) ∈ SU(N)

(Ω · P)µν(x) = Ω(x)Pµν(x)Ω(x)
† Pµν(x)

Given h : SU(N) → SU(N), transform Uµ so Pµν 7→ h(Pµν)

f (Uµ) = h(Pµν)P
†
µνUµ

Gauge equivariance ⇐⇒ conjugation equivariance:

h(ΩPΩ†) = Ωh(P)Ω†

Achieve by transforming eigenvalues for fixed eigenvectors
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[Boyda et al., 2008.05456]

https://arxiv.org/abs/2008.05456


Gauge-Equivariant Flows

Residual Flows

Inspired by Lüscher’s trivializing map [Lüscher 0907.5491]

Transform active links via

Uµ(x) 7→ e iϵ∂x,µϕ(U)Uµ(x)

Gauge-invariant “potential” ϕ(U)

Example: ϕ(U) ∝ SWilson(U) =⇒ Wilson flow/stout smearing
More complex:

ϕ(U) =
∑
x

∑
µ̸=ν

cµν(x ;Ufrozen)ReTr(Pµν)

Small but finite ϵ for invertibility (ϵ ≲ 1/8)
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Lie-algebra-valued derivative

https://arxiv.org/abs/0907.5491


Gauge-Equivariant Flows

Spectral vs Residual Flows

Spectral flows

Transform plaquettes

Limited by passive plaquettes

Residual flows

Update links

Denser active mask

Limited by step size

Harder to invert

Require fixed-point iteration

Continuous Flows
[Bacchio et al. 2212.08469]

Continuous time

Unmasked

Requires ODE integration
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https://arxiv.org/abs/2212.08469


Pseudofermion Models

Fermions

Fermion target:

p(U) ∝ e−SG [U] detM[U]

Methods:

Compute detM directly

Simple, but not scalable

Estimate detM

E.g. pseudofermions

Schwinger model at criticality
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Truth

[Albergo et al. 2202.11712]

https://arxiv.org/abs/2202.11712


Pseudofermion Models

Autoregressive Pseudofermion modeling

Target Distributions:

Marginal:

pm(U) = e−SG (U) detM[U]

Conditional:

pc(ϕ | U) ∝ 1

detM[U]
e−ϕ†M−1ϕ

Joint:

pjoint(U, ϕ) = pc(ϕ | U)pm(U)

= e−SG (U)−ϕ†M−1ϕ

Models:

Prior:

Gauge z ∼ Haar, heatbath, ...

Pseudofermion χ ∼ e−χ†χ
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[Albergo et al., 2106.05934]

[Abbott et al., 2207.0945]

https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2207.0945


Pseudofermion Models

Conditional Model (2 Flavor Theory)

Prior χ ∼ e−χ†χ

Target ϕ ∼ 1
det(DD†)

e−ϕ†(DD†)−1ϕ

Optimal model: ϕ = fc(χ | U) = D[U]χ
But det J = detDD† not tractable

Estimate optimal model with tractable (gauge-equivariant) layers

ϕa(x) 7→ A[U](x)ϕa(x) + B[U](x , y)ϕf (y)

ϕf (x) 7→ ϕf (x)

A[U],B[U]: (learned) linear operators
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[Albergo et al., 2106.05934]

[Abbott et al., arxiv:2207.0945]

https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2207.0945


Pseudofermion Models

Improving Pseudofermion Models

More pseudofermion draws

Improve for fixed model
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ESS(Npf ) =
ESS(∞)

1+ C
Npf



Future Work

Future work

Gauge equivariant flows

Currently: Spectral, Residual, Continuous
More work needed – particularly on SU(N)

Fermions

Exact determinant works, but not scalable
Currently: pseudofermion models

Scaling – in progress at Aurora

Hybrid methods – large space to explore

Beyond sampling

Mapping between different actions
Contour deformation [Detmold et al., 2101.12668]

[Pawlowski+Urban, 2203.01243] [Lawrence et al., 2205.12303]
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Future Work

Training Marginal Models

Stochastic derivative estimate:

∇ log detM = Tr∇ logM

= Tr
[
M−1∇M

]
= E

χ∼e−χ†χ

[
χ†M−1∇Mχ

]
Requires 1 inversion/sample χ†M−1

Does not give access to density
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Future Work

Spectral Flows (continued)

Goal: Permutation equivariant flow

Perform maximal torus flow on {θi}
Choose (arbitrary) canonical cell

Use order of eigenvalues

Canonicalization ∼ sorting

In canonical cell: use standard methods

e.g. rational quadratic spline

SU(3) example:

-π 0 π

θ1

-π

0

π

θ2
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Future Work

Parallel Transport Convolution Networks

Normal Convolution:
ϕ(x) 7→

∑
δ

cδϕ(x + δ)

Parallel transport convolution:

PTCL[ϕ](x) =
∑
δ

cδW (x , x + δ)ϕ(x + δ)

ϕa(x) 7→ A[U](x)ϕa(x) + B[U](x , y)ϕf (y)

ϕf (x) 7→ ϕf (x)

B[U](x , y)ϕf (y) = PTCL[PTCL[. . .PTCL[ϕ]]]
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Wilson line



Future Work

Example: Scalar Field Theory

Fields ϕ(x) ∈ R, target p(ϕ) ∝ e−S(ϕ)

Split z → za, zf active/frozen

Typically: even/odd checkerboard

ϕf = zf

ϕa = es(zf ) ⊙ za + t(zf )

Inverse:

zf = ϕf

za = e−s(ϕf ) ⊙ (ϕa − t(ϕf ))

Tractable Jacobian: det J =
∏

i e
s(ϕf )i

z

za

=

ϕa

zb

split

ti

e
−si −

⊙

ϕb

couple

combine

(z)g
−1

i

Compose alternating transforms (ϕa, ϕf ) ↔ (ϕf , ϕa)
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[Dinh et al, 1605.08803] [Albergo et

al., 1904.12072]

Arbitrary
functions

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1904.12072


Future Work

Reverse KL Training

Model density q(ϕ), target p(ϕ) = 1
Z e

−S(ϕ)

Reverse Kullback Leibler (KL) loss L:

L = DKL(q||p)

=

∫
dϕ q(ϕ) log

q(ϕ)

p(ϕ)

= Eϕ∼q [log q(ϕ) + S(ϕ)] + logZ
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Model samples

Constant
(⇒ can ignore)

Key facts

DKL(q||p) ≥ 0
DKL(q||p) = 0 ⇔ q = p



Future Work

Symmetries and Sampling

Gauge symmetry =⇒ p(Ω · U) = p(U)

Model gauge invariance: q(Ω · U) = q(U)

Achieve with 2 conditions:

Prior gauge invariance: r(Ω · U) = r(U)
Gauge Equivariance: f (Ω · U) = Ω · f (U)

Gauge invariant Pure 
gaug

e

De
ns

ity

Gauge invariant Pure 
gaug

e

De
ns

ity
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Gauge transformation
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