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Outline

1. Trivializing maps as continuous NFs

0.0 0.5 1.0 1.5 2.0
200

100

0

100

200
log(J)
log(p)

0.0 0.5 1.0 1.5 2.0

40

30

20

10

0 log(q/p) = log(J) log(p)

2. NFs for SU(n) gauge theories employing SVD
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3. Simulation results & discussion
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Lattice Gauge Theory & Trivializing Maps

904 M. Lüscher

In the case of the Wilson flow, for example, the contribution of the Jacobian to the action
of the field V ,

ln det Ft,∗(V ) = − 16
3

∫ t

0

ds W0(Us), (3.9)

is proportional to the integral of the Wilson plaquette action along the flow.

4. Trivializing Maps

Somewhat surprisingly, trivializing maps can, to some extent, be constructed explicitly
in the pure gauge theory. The construction is explained in this section, assuming that the
gauge action S(U ) is a sum of Wilson loops (plaquettes, rectangles, etc.).

4.1. Trivializing flows. If the generator Z t (U ) of the flow (3.2) is such that

∫ t

0

ds
∑

x,µ

{
∂a

x,µ[Zs(U )]a(x, µ)
}

U=Us
= t S(Ut ) + Ct , (4.1)

where Ct may depend on t but not on the fields, the associated integrated transformations
satisfy

S(Ft (V )) − ln det Ft,∗(V ) = (1 − t)S(Ft (V )) − Ct . (4.2)

In particular, the transformation at t = 1 is then a trivializing map.
Equation (4.1) is a rather implicit condition on the generator of the flow. However,

when differentiated with respect to t , it assumes a more tractable form,

∑

x,µ

{
∂a

x,µ[Z t (U )]a(x, µ) − t∂a
x,µS(U )[Z t (U )]a(x, µ)

}
= S(U ) + Ċt , (4.3)

which involves the generator at time t only. Note that the differential condition (4.3)
and the flow equation (3.2) imply Eq. (4.1), i.e. it suffices to find a generator Zt (U ) that
satisfies Eq. (4.3).

4.2. Existence of trivializing flows. Equation (4.3) is an inhomogeneous linear partial
differential equation for the generator Z t (U ). Since it is a scalar equation, one expects
that there are many solutions. In the following, the solution will be obtained in the form

[Z t (U )]a(x, µ) = −∂a
x,µ S̃t (U ), (4.4)

where the action S̃t (U ) is to be determined.
When inserted in Eq. (4.3), the ansatz (4.4) leads to the Laplace equation

Lt S̃t = S + Ċt , (4.5)

Lt =
∑

x,µ

{
−∂a

x,µ∂a
x,µ + t

(
∂a

x,µS
)
∂a

x,µ

}
(4.6)
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Leading Order Trivializing Map for Wilson Action

The Wilson action for SU(nc) gauge theory

SWilson[U ] = −
β

2nc

∑
x∈Λ

∑
µ̸=ν

Tr Plaqµν(x)

Lüscher’s trivializing map at leading order is a matrix integration as:

V (t) = V (0)−
nc

2(n2
c − 1)

β

2nc

∫ t

0
dτP

{
V (τ)Γ(τ)

}
V (τ)

where V (0) = Uµ(x), Γ(τ) is the corresponding sum of staples, and P is a
projection operator to anti-hermitian traceless space.

The Jacobian of transformation is
log J(t) = −

∫ t

0
dτSWilson[Vτ ].

The flow terminates at t = 1,
∼ the minimum of KL divergence.
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Normalizing Flows & Machine Learning

In a nutshell, for the method of normalizing flows, one should provide three
essential components:

a prior distribution to draw initial samples,
a map (e.g. with deep neural networks) to perform a series of invertible
transformations on the samples,
an action that specifies the target distribution, defining the goal of the
generative model; p ∝ exp(−action)

The model is fitted (trained) by minimizing KL divergence: E [log(q/p)]
For exactness, one can impose an accept/reject step or....
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NFs for Gauge Theories & Gauge Equivariance

Gauge theories are invariant under a huge class of gauge transformations

Uµ(x) → Ω(x)Uµ(x)Ω
†(x+ µ̂)

In principle, one can incorporate gauge symmetries in the flow functions in
order to improve the training.

Gauge-equivariant functions incorporate the gauge symmetry;
see [Kanwar, et.al., arXiv:2003.06413] & [Boyda, et.al., arXiv:2008.05456].

Any transformation that involves gauge-invariant quantities by construction is
gauge equivariant.
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Wilson Action & Gauge Invariant Quantities

Wilson action for SU(nc) gauge:

S[U ] = −
β

2nc

∑
x∈Λ

∑
µ̸=ν

ReTr Pµν(x)

⇒

S[U ] = −
β

2nc

∑
x∈Λ

∑
µ

ReTr Uµ(x)Γµ(x)

Γµ(x) =
∑
ν ̸=µ

{
Uν(x + µ̂)U

†
µ(x + ν̂)U

†
ν (x) − U

†
ν (x + µ̂ − ν̂)U

†
µ(x − ν̂)Uν(x − ν̂)

}

The action is invariant under gauge transformation:

Uµ(x) → Ω(x)Uµ(x) Ω
†
(x + µ̂)

Other gauge-invariant quantities:

Eigenvalues of Pµν

Singular values of Γµ, i.e. Σµ in Γµ = WµΣµV
†
µ

Eigenvalues of Ŭµ = V †
µUµWµ

We use gauge-invariant quantities to build gauge equivariant transformations.
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Gauge-Equivariant Flows (two methods that we tried)

(Plaquette) spectral flow:
Flow eigenvalues of Pµν & push the changes to designated links
see, e.g., [Kanwar, et.al. arXiv:2003.06413] & [Abbott, et.al., arXiv:2305.02402]

We calculate the sum of adjacent staples of links, then:

SVD) Γµ = WµΣµV
†
µ

Def) Ũµ = V †
µUµWµ

Eig) Ũµ = QΛQ†

Flow1) Λ → Λ′(Λ, S)

Flow2) Ω → Ω′ = Ωeih(Ω,Λ′,S)

.) Ũ ′
µ = Q′Λ′Q′†

.) U ′
µ = VµŨ

′
µW

†
µ

Transformation is

gauge equivariant,
reversible if we update links from even & odd sites in sequence.

A block of transformation contains 2ndim layers covering µ directions and
even&odd sites.
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Parametrization of Eigenvalues of SU(3) Matrix Model

Z =

∫
dUe−

β
3 ReTrU ; (dU is the Haar measure)

=

∫
principal

dθ1dθ2Vconj(θ1, θ2)e
− β

3 Re (eiθ1+eiθ2+eiθ3); (θ3 = −θ1 − θ2)

Two variables θ & φ to parameterize three eigenvalues

eiθk = eiθsk , sk =
2√
3
sin

(
φ+

2π

3
k

)
, s1 + s2 + s3 = 0

principal/canonic cell

/6 /6
0 I

e i2 /3I ei2 /3I

More cells & conjugacy volume
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Results for SU(3) on a 44 Lattice with β = 1
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0) Lüscher’s leading order trivializing map as a reference point; no parameter

1) One block of changing all links as proposed with SVD; 1288 parameters

2) Two blocks of changing all links as proposed with SVD; 2 x 1288 parameters

3) Employing #0 & #1; 1288 parameters
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Concluding Remarks & Outlook

We observe that using SVD at higher dimensions can improve the training
compared to (plaquette) spectral flow.

Continuous & discreet flows can be used together to improve the training.

We are developing a package...
https://github.com/jkomijani/normflow

Thanks for Your Attention!

JK (ETH) 11 / 11


