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Abstract: In lattice gauge theory/fthierelexistifieldranstormations thatimap theltheors
to the trivial one, where the basic field variables are completely decoupled from one
another. Such maps can be constructed systematically by integrating certain flow equa-
tions in field space. The construction is worked out in some detail and it is proposed to
combine the Wilson flow (which generates approximately trivializing maps for the Wil-
son gauge action) with the HMC simulation algorithm in order to improve the efficiency
of lattice QCD simulations.

4.1. Trivializing flows. If the generator Z;(U) of the flow (3.2) is such that
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the substitution /' — V of the integration variables in the functional integral maps the
theory to the trivial one where the link variables are completely decoupled from one
another. The expectation values (2.1) are then given by

(0)= /D[V](’)(F(V)). (2.9)

Such trivializing maps thus contain the entire dynamics of the theory.

Although the remark is likely to remain an academic one, an intriguing observation
is that the integral (2.9) can be simulated simply by generating uniformly distributed
random gauge fields. Subsequent field configurations are uncorrelated in this case and

3/11



Leading Order Trivializing Map for Wilson Action

@ The Wilson action for SU(n.) gauge theory
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@ Liischer’s trivializing map at leading order is a matrix integration as:
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where V(0) = Uy, (z), I'(7) is the corresponding sum of staples, and P is a

projection operator to anti-hermitian traceless space.

@ The Jacobian of transformation is
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@ The flow terminates at t = 1, 0

~ the minimum of KL divergence.
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Normalizing Flows & Machine Learning

@ In a nutshell, for the method of normalizing flows, one should provide three

essential components:
e a prior distribution to draw initial samples,
e a map (e.g. with deep neural networks) to perform a series of invertible
transformations on the samples,
@ an action that specifies the target distribution, defining the goal of the
generative model; p o« exp(—action)
@ The model is fitted (trained) by minimizing KL divergence: E [log(q/p)]
@ For exactness, one can impose an accept/reject step or....
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NFs for Gauge Theories & Gauge Equivariance

@ Gauge theories are invariant under a huge class of gauge transformations
Uu(z) = Q) Uu(z) Q' (z + o)
@ In principle, one can incorporate gauge symmetries in the flow functions in

order to improve the training.

@ Gauge-equivariant functions incorporate the gauge symmetry;
see [Kanwar, et.al., arXiv:2003.06413] & [Boyda, et.al., arXiv:2008.05456].

@ Any transformation that involves gauge-invariant quantities by construction is
gauge equivariant.
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Wilson Action & Gauge Invariant Quantities

@ Wilson action for SU(n.) gauge:

S[U] = Z Z ReTr P, (z
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@ The action is invariant under gauge transformation:
Un(z) = Q) Un() Q¥ (z + )

@ Other gauge-invariant quantities:
o Eigenvalues of P,
o Singular values of T, i.e. £, in Iy = W, S,V
o Eigenvalues of U, = V,/U, W,

@ We use gauge-invariant quantities to build gauge equivariant transformations.
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Gauge-Equivariant Flows (two methods that we tried)

o (Plaquette) spectral flow:
Flow eigenvalues of P,, & push the changes to designated links
see, e.g., [Kanwar, et.al. arXiv:2003.06413] & [Abbott, et.al., arXiv:2305.02402]

@ We calculate the sum of adjacent staples of links, then:
SVD) I', = WME V
Def) U,L = V u.w,
Eig) U,L = QAQT
Flowl) A — A’(A,S)
Flow2) © — €' = Qeh(BA"5)
) U, =QNQT
) UL VuULW
Transformation is
e gauge equivariant,
e reversible if we update links from even & odd sites in sequence.
A block of transformation contains 2ng;, layers covering p directions and
even&odd sites.
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Parametrization of Eigenvalues of SU(3) Matrix Model
7Z = /dUe_gReTrU; (dU is the Haar measure)

— / deldHQVconj(91792)€_§Re (fz'i91+63i92+ei93); (93 _ _91 _ 02)
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Two variables 6 & ¢ to parameterize three eigenvalues
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Results for SU(3) on a 4% Lattice with 3 =1
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0) Lischer's leading order trivializing map as a reference point; no parameter

1) One block of changing all links as proposed with SVD; 1288 parameters

2) Two blocks of changing all links as proposed with SVD; 2 x 1288 parameters
3) Employing #0 & #1; 1288 parameters

JK (ETH) 10/11



Concluding Remarks & Outlook

@ We observe that using SVD at higher dimensions can improve the training
compared to (plaquette) spectral flow.

@ Continuous & discreet flows can be used together to improve the training.

o We are developing a package,_, from normflow import Model
from normflow.prior import SUnPrior # SU(n) uniform dist.
https://github.com/jkomijani/normflow_ from normflow.action import WilsonGaugeAction

from normflow.nn import WilsonTrivMap_

def make model(beta, n c=3, lat shape=(4, 4, 4, 4)):
prior = SUnPrior(n_c, shape=(4, *lat_shape))
action = WilsonGaugeAction(beta, n_c=n_c, ndim=4)
net_ = WilsonTrivMap_(action) # default: Leading Order

return Model(prior=prior, action=action, net_=net )

Thanks for Your Attention!
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