Studies of Gauge-fixed Fourier acceleration for SU(3) gauge theory

Lattice 2024 – Liverpool

August 1, 2024

Yikai Huo, Norman H. Christ, Rana Urek Columbia University RBC/UKQCD Collaborations

<u>Boston University</u> Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

<u>University of Cambridge</u> Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

<u>Johannes Gutenberg University of Mainz</u> Alessandro Barone

Alessandro Barone

<u>Liverpool Hope/Uni. of Liverpool</u> Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

<u>Stony Brook University</u> Fangcheng He Sergey Syritsyn (RBRC)

Outline

- Critical slowing down in Lattice QCD
- Examine softly gauge-fixed 4D SU(3) gauge theory
- Introduce naïve Fourier acceleration
- Study resulting acceleration for 16^4 volume at $\beta = 6$, 7 and 10
- Conclusions

Contributors: Luchang Jin, Ahmed Sheta, Yidi Zhao

Critical slowing down in lattice QCD

- Molecular dynamics (MD) time separating independent samples grows as a → 0:
 - Barriers between topological sectors become harder to penetrate. (tunneling)
 - Longer MD time (defined at the lattice scale) is needed to decorrelate at a physical distance which is a growing number of lattice units: *τ* ~ *a*-*x*. (critical slowing down)
- Tunneling: open boundary conditions
- Critical slowing down: Fourier acceleration

Critical slowing down in lattice QCD

- Molecular dynamics (MD) time separating independent samples grows as a → 0:
 - Barriers between topological sectors become harder to penetrate. (tunneling)
 - Longer MD time (defined at the lattice scale) is needed to decorrelate at a physical distance which is a growing number of lattice units: *τ* ~ *a*^{-x}. (critical slowing down)
- Tunneling: open boundary conditions
- Critical slowing down: Fourier acceleration

Critical slowing down and HMC

• Introduce fifth simulation dimension with momenta π_l conjugate to each U_l :

$$\mathcal{H} = \sum_{l} \pi_{l} \frac{1}{2M} \pi_{l} + \mathcal{S}(U)$$

- HMC executes ballistic motion ("trajectory") between momentum randomizations
- At tree level expect: τ ~ N_{steps} ~ Rρ/a [Kennedy & Pendleton]
- Pure-gauge simulation:
 - $\tau \sim 1/a^2$ [Luscher & Schaefer]
 - Attributed to non-renormalizability of HMC

Fourier acceleration

• Recall for a system of simple harmonic oscillators:

$$H = \sum_{i=1}^{N} \left\{ \frac{p_i^2}{2M} + \frac{k_i}{2} q_i^2 \right\}$$

- Arrange $j < i \rightarrow k_j < k_i$

- Frequencies are $\omega_i^2 = k_i/M$
- Time between independent samples determined by $1/\omega_1$ but integration step size determined by $1/\omega_N$
- Number of steps ~ ω_N/ω_1 grows with the ratio of scales.
- Growth of effort with ω_N/ω_1 can be eliminated:
 - Make *M* mode-dependent: $M \rightarrow M_i = k_i$
 - Now $\omega_i^2 = k_i/M_i = 1$, removing the problem!

Fourier acceleration & lattice QCD

- "Fourier" acceleration is complicated by local gauge symmetry:
 - Fix the gauge or
 - Identify gauge-covariant "modes", *e.g.* those of gauge covariant Laplacian (RMHMC talk of Sarah Fields)
- Soft gauge fixing:

$$\begin{split} \mathbf{Z} &= \int \mathbf{d}[\mathbf{U}] \frac{\mathrm{e}^{-\mathbf{S}_{\mathrm{Wilson}}[\mathbf{U}]} \int \mathbf{d}[\mathbf{g}] \mathrm{e}^{-\mathbf{S}_{\mathrm{GF}}[\mathbf{U}^{\mathrm{g}}]}}{\int \mathbf{d}[\mathbf{g}'] \mathrm{e}^{-\mathbf{S}_{\mathrm{GF}}[\mathbf{U}^{\mathrm{g}'}]}} \\ &= \int \mathbf{d}[\mathbf{U}] \frac{\mathrm{e}^{-\mathbf{S}_{\mathrm{Wilson}}[\mathbf{U}] - \mathbf{S}_{\mathrm{GF}}[\mathbf{U}]}{\int \mathbf{d}[\mathbf{g}'] \mathrm{e}^{-\mathbf{S}_{\mathrm{GF}}[\mathbf{U}]}} \begin{bmatrix} 1. \ \text{Transform } \mathbf{U} \rightarrow \mathbf{U}^{\mathrm{g}} \\ 2. \ \text{Drop } \int \mathbf{d}[\mathbf{g}] \end{bmatrix} \end{split}$$

Soft gauge fixing

- Partition function: $Z = \int d[U] \frac{e^{-S_{Wilson}[U] S_{GF}[U]}}{\int d[g'] e^{-S_{GF}[Ug']}}$
- Completely softly gauge-fixed action: $S[U] = S_{Wilson}[U] + S_{GF}[U] + S_{FP}[U]$ $S_{FP}[U] = -\ln\left(\int d[g]e^{-S_{GF}[U^g]}\right)$
- For Landau gauge:

$$\mathrm{S}_{\mathrm{GF}}[\mathrm{U}] = -rac{eta\mathrm{M}}{3}\sum_{\mathrm{n},\mu}\mathrm{Tr}\left\{\mathrm{U}_{\mu}(\mathrm{n})
ight\}$$

- Introduced in 1990 to solve Gribov copy problem:
 - D. Zwanziger, Nuclear Physics B345 (1990) 461-471.
 - Parrinello and Jona-Lasinio, Phys Lett B251 175-180.

Fourier acceleration

- Connect links as a torus but set boundary links to the unit matrix:
- Let {\$\phi_{n\mu}\$^T(k,i)}\$_{1 ≤ i ≤ 3} and \$\phi_{n\mu}\$^L(k)\$ be the transverse and longitudinal free-field modes for unit boundaries.

(10)

• Use Fourier-accelerating K.E. term in Hamiltonian:

$$H = \sum_{k,i} \widetilde{\pi}_a^{\rm T}(k,i) \frac{1}{2k^2} \widetilde{\pi}_a^{\rm T}(k,i) + \sum_k \widetilde{\pi}_a^{\rm L}(k) \frac{1}{2M^2} \widetilde{\pi}_a^{\rm L}(k) + S(U)$$

Where

$$\pi_{\mathbf{a}}(\mathbf{n},\mu) = \sum_{\mathbf{k},\mathbf{i}} \widetilde{\pi}_{\mathbf{a}}^{\mathrm{T}}(\mathbf{k},\mathbf{i})\phi_{\mathbf{n}\mu}^{\mathrm{T}}(\mathbf{k},\mathbf{i}) + \sum_{\mathbf{k}} \widetilde{\pi}_{\mathbf{a}}^{\mathrm{L}}(\mathbf{k})\phi_{\mathbf{n}\mu}^{\mathrm{L}}(\mathbf{k})$$

Computational Details

- SU(3) gauge theory, Wilson action
- 16⁴ volume, $\beta = 6, 7, 10$ and 100
- Between 5K and 10K (GF)HMC trajectories
- Trajectory lengths of 0.6, 1.0 and 2.0 MD time units
- Soft gauge fixing
 - M = 3 for gauge fixed case
 - 200 heatbath sweeps for inner Monte Carlo
 - Small $\Delta t = 0.0125$, average plaquette is accurate at 1/1000
- Boundary conditions:
 - Unit link: see previous slide
 - Frozen: equilibrate configuration with periodic BCs, then leave links on boundary fixed.
- Study flowed Wilson energy, varying flow time.

• Compare $\beta = 10$ and 7

• At β = 7.0 compare two trajectory lengths: 1.0 and 0.6 MD units:

• Compare β = 7.0 and 6.0, trajectory length 1.0 MD units, unit link BC:

Compare b=6.0 4-volume versus time-slice averaged:

Conclusions

- Gauge-fixed Fourier acceleration reduces autocorrelation 3x at β = 7.0 for SU(3) Yang-Mills
- Using free-field modes appears to be important
- Acceleration of volume-averaged, flowed Wilson energy disappears at $\beta = 6.0$ (confined)
- Some acceleration may remain at β = 6.0 for timeslice averages?
- See presentations of Erik Lundstrum (Nambu HMC) and Sarah Fields (RMHMC) tomorrow at 2:15 and 2:35 in LT2.

Physical DWF ensembles

