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Pros Cons
® no sign problems e Hamiltonian grows exponentially with system size
e real time dynamics e Mitigated by emerging algorithms/methods

e Tensor Networks
e Quantum Computing
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The Hilbert Space

Positions of links labelled by x, directions by k&

Hamiltonian acts on wave functions:

V(. Ugky.-r) - SU(Q)Nlinks - C,

Construction from single link basis functions

on(U) : SU(2) — C
Basis for entire space:

[ T H anx,k(UxA,k)
x,k
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Kogut Susskind Hamiltonian

! John Kogut and Leonard Susskind. “Hamiltonian formulation of Wilson's lattice gauge theories”. In: Phys. Rev. D 11 (2 Jan.
1975), pp. 395-408. DOI: 10.1103/PhysRevD.11.395.


https://doi.org/10.1103/PhysRevD.11.395
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Kogut Susskind Hamiltonian

[N

3 g rc 2 2 5 ([ 72
fixs = ST+ 3 3 T [t e (P

x,k,c - x,j<k

Canonical Momentum Operators:

LS :fi%Qp(...,e_iﬁT“Ux,k,...)|5:0
and

Ae . d i Bre

Ry r =—1@ (...,Ux,ke ,...>|5:0,

!Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories” .
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Kogut Susskind Hamiltonian

Hys = %2 ;(/;/)3 + g% Z Tr [1 — Re ( Ax,jk)]

x,j<k

Plaquette Operator:

) .t
"t xtaij Cx+aj,i

F)
Il
x
=

in terms of link operators

U0 = Use® (- .., U, - - -

and

Uj{‘,k 1/] = U,Lk'(/} ( ey UX,k, e

!Kogut and Susskind, “Hamiltonian formulation of Wilson’s lattice gauge theories” .
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The Hamiltonian
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s :% Z(Ai,k)2+% Z Tr [17 Re<Ax,jk):|

x,k,c x,j<k

Gauss Law for physical states:

Galy =Y (Lo + RS _igr) 9) =0

k

Enforced by adding

Hyponaty = 1 (G5) (1)

!Kogut and Susskind, “

Hamiltonian formulation of Wilson's lattice gauge theories”.
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Electric Basis Functions

Character / Clebsch-Gordon expansion:
e Eigenfunctions |J,mr, mg) of Zc(fjc)Q, Ls and R3 known

o U obtained by Fourier-like expansion, truncate at some Jmax
For g> — 0 (Continuum limit):

¢ — [[6(1— Pes)

x,jk

= Jmax — 00
How to solve this:

1. Reformulate the KS-Hamiltonian s.t. the magnetic
contributions become local

2. Choose a set of appropriate basis functions

3.0 4 analytic
25] ° CGJna=1
0 CG Jmax = 5/2
2.0
T T
10~1 10°
g2

Mass gap M for a single plaquette
as a function of g using
Clebsch-Gordon Operators
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Magnetic Hamiltonian
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Plaquette links, labelled by x

2Manu Mathur and Atul Rathor. Exact duality and local dynamics in SU(N) lattice gauge theory. 2023. arXiv: 2109.00992
[hep-lat]. URL: https://arxiv.org/abs/2109.00992.


https://arxiv.org/abs/2109.00992
https://arxiv.org/abs/2109.00992
https://arxiv.org/abs/2109.00992
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Magnetic Hamiltonian

Plaquette links, labelled by x, Helper Links labelled by (x, k)

Hival = g° gﬁ [(Exk + W(U)Exﬂ + % zx:Tr [1 ~ Re Ux]

IO
IO
IO

2Mathur and Rathor, Exact duality and local dynamics in SU(N) lattice gauge theory.
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Magnetic Hamiltonian

Plaquette links, labelled by x, Helper Links labelled by (x, k)

Aaual = g ; Tr {(Exk + Vs ((i)Ex)z} ¥ f g Tr {1 _ Re (f‘x}

> e
Ih = g L, «7c
c

2Mathur and Rathor, Exact duality and local dynamics in SU(N) lattice gauge theory.
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Magnetic Hamiltonian

Plaquette links, labelled by x, Helper Links labelled by (x, k)

f]‘m“l :g2 ZTr {(ix_l\ + @k(U)Ex>z} + (]% ZTr {l — Re (t'x}
x,k 7 x

With covariant derivatives

VI(U)EX = Rx + UT -Z:xféz UQ,xféz

2,x—ég
and

jaN

VQ(U)EX = I_:x + Uf,x—éle*él Ul,xfél .

2Mathur and Rathor, Exact duality and local dynamics in SU(N) lattice gauge theory. 5
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Magnetic Hamiltonian

Plaquette links, labelled by x, Helper Links labelled by (x, k)

flduul :gz Z Tr {(ix_/\ + %1\ ((V)]fx>3:| + g% ZTI' [1 — Re Ux]
x,k x

2.0
] ) 1.5
Plaquette link wave function =~
expected to peak around ] 109
=
« =~ 1 for g> = 0. 0.5
0.0 4; . .
=) 0 2
Tr([Ux]

2Mathur and Rathor, Exact duality and local dynamics in SU(N) lattice gauge theory.
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Magnetic Hamiltonian

2Mathur and Rathor, Exact duality and local dynamics in SU(N) lattice gauge theory.

Plaquette links, labelled by x, Helper Links labelled by (x, k)

Hiual 292 xZ/;Tr [(Exk + @k(U)Ex)Z} + g% Zx:Tr [1 — Re Ux]

Gauss Law:

Gely) = L2+ Ra+ 3 (Eou+ B i) 9 =0.
k
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Plaquette Links Basis Functions

Parametrisation of SU(2): Hermite Polynomials:
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sin 0 cos ¢ =
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e only use odd Hermite polynomials to maintain
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n(w) Sin'l/} \/m 2n+1(u(¢)) €

Correct for
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Plaquette Link Radial Basis Functions

Cn(¥)

—50




Plaquette Link Radial Basis Functions

Discretisation
[e]e] o]

Cn ()

Nmax = 5
\ a = 50.0
N \\(\?
04 )g( \-/ S
By,
Vi
T T T T
\ a = 500.0
0 :&\ﬁx
1
—50 T T T T
0 1 2 3

Nmax = 1D
109 3 a = 50.0
0 @,f@'f{@‘,(9}r.q.",wf&va.";‘Zﬁijé‘f"ﬁ‘"&
_10 - j
T T T T
50 4 | a = 500.0
0 ;;ii\‘:f~
50 |
T T T T
0 1 2 3
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Discretisation
[e]ele] J

Plaquette Links Helper Links
e Truncate at some Nmax and lmax e No obvious constraint in terms of gauge link
operators

e Operator Matrices of operator O obtained
by (numerically) evaluating — Clebsch-Gordon operators

- e Gauss Law suggests Jmax =~ lmax
/ dv Bn’«,l’,m,’OBn.l#m

e Square operators I?and L R integrated
out separately
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= exact diagonalization

e Gauss Law = lpax =0

Energies

M

4.2

4.0 1

3.8

3.4

3.2
3.0
2.8
2.6
2.4
2.2

2.0

HP npmax =3, a =20
o HP npae =3, =100
HP nmax = 3, @ = 500

—— Analytic
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Plaquette Expectation Value

1.0 4

0.8

0.6

(1| Plr)

e Single degree of freedom 7

= exact diagonalization 0.2
1.0 A

e Gauss Law = lpax =0 0.9

0.8 4
HP npmax = 3, @ =20
o HP npa =3, =100
HP nmax = 3, @ = 500

—— Analytic

0.7

(ol Plio)

0.6
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Convergence
o
4.0 A
3.9 1
(=1
. 3.8 -
e Single degree of freedom
= exact diagonalization 3.7
T
e Gauss Law = [nax =0 3.0 4 °
o
o 284 g
] HP nmax = 2, @ = 100 o
o
o HP np. =5, =100
26 HP Ny = 9, a = 100
—— Analytic
2.4 T T T
102 10~* 100
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Single Plaquette

Convergence
4
4.0 A
3.9 1
=1
) 3.8 1
e Single degree of freedom
= exact diagonalization 3.7
r
e Gauss Law = lpax =0 304 e
o
Takeaways: < 281 N
5] HP nmax = 2, @ = 100 o
. . . o
e Good matching of ground and first excited o HP fga =5, =100
2.6 4
. HP npmax =9, @ = 100
state at appropriate « Analytic
. 2.4 T T T
e Convergence with nmax — 00 10-2 10-1 10°
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3 X 2 System, Open Boundaries

3N.E. Ligterink, N.R. Walet, and R.F. Bishop. “Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge

Theory”. In: Annals of Physics 284 (2000). DOI: https://doi.org/10.1006/aphy.2000.6070. e


https://doi.org/https://doi.org/10.1006/aphy.2000.6070

Results
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3 X 2 System, Open Boundaries

e Solved using ITensor MPS
e Simulations run at optimal «

e Compared to Max. Tree results with CG operators

3Ligterink, Walet, and Bishop, “Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory”.
10



Results
ocoe

3 X 2 System, Open Boundaries

Energies
354 ¢ 0 0 o
® 8 0 g
3.4 4
= 3.3+
3.2 4
. 3.1 4
e Solved using ITensor MPS
6.0 T
e Simulations run at optimal « 0y
. 5.5 4
e Compared to Max. Tree results with CG operators
g ¢ HP npax =6, lnax =1
7 8 HP =6, lax =2
HP nmax = 15, lnax = 2
4590 —— CG Jpax = 5.0 (Max. Tree)
10'*l 1(')“
g‘l

3Ligterink, Walet, and Bishop, “Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory”.
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3 X 2 System, Open Boundaries

Plaquettes

% 0 0 ,

e Solved using ITensor MPS

e Simulations run at optimal «

e Compared to Max. Tree results with CG operators

Nmax = 6, lmax = 1
0 HP npax =6, lmax =2

0.7 4 HP nmax = 15, lmax = 2
CG  Jmax = 5.0 (Max. Tree)

T T
10-1 100

3Ligterink, Walet, and Bishop, “Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory”.
10
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3 X 2 System, Open Boundaries

Plaquettes
SR
0.9
—~ 0.8
<g 0.7
= 061
0.5
e Solved using ITensor MPS 0.4
8oy o j
e Simulations run at optimal «
0.9
e Compared to Max. Tree results with CG operators =
A 0.8+ Nmax = 6, lmax = 1
£ @ HP Tl = 6, lax =2
Takeaways: 071 HP M = 15, lnax = 2
. —— CG Jmax = 5.0 (Max. Tree)
e Convergence with (nmax, lmax) — 00 ; T
10—t 10°
e Stable for g> — 0 s

3Ligterink, Walet, and Bishop, “Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory”.
10
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Next Steps

e bigger systems (and reference)

e add some fermions The End

better algorithms

e more insightful observables Thanks for listening

eventually SU(3)
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e Clebsch Gordon Operators fullfill canonical commutation relations by construction



The Question of Gauge Invariance

e Gauge Invariance < [H,G$] =0

° é,‘; only contains ﬁ,‘; + ]Si,‘;

o It turns out that LS + RS = ° where (¢ are the orbital momentum operators only acting on
Yim (6, ¢)

e This seems to lead to exact commutation relations for [¢°, L], [(°, R°] and [¢°, 3" (L¢)?]

e Clebsch Gordon Operators fullfill canonical commutation relations by construction
= Operators probably lead to a gauge invariant theory, but algebra is still under construction
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