Effect of FTHMC with 2+1 Domain Wall Fermions on Autocorrelation Times via Master-Field Technique

S. Yamamoto¹ P. A. Boyle¹ T. Izubuchi¹ L. Jin² N Matsumoto³

¹Brookhaven National Laboratory

²Department of Physics University of Connecticut

³Department of Physics University of Boston

Lattice 2024

Effect of FTHMC with 2+1 Domain Wall Fer

2 Simulation Details

3 Measurements

4 Autocorrelation

5 Outlook

Table of Contents

1 Field Transformation

- 2 Simulation Details
- 3 Measurements
- Autocorrelation
- 5 Outlook

Field-Transformed HMC

With $U = \mathcal{F}_t(V)$,

$$Z = \int \mathcal{D}Ue^{-S(U)} = \int \mathcal{D}V \text{Det}[\mathcal{F}_*(V)] e^{-S(\mathcal{F}(V))} = \int \mathcal{D}V e^{-S_{FT}(V)}$$

$$S_{FT} = S(\mathcal{F}_t(V)) - \ln \text{Det}\mathcal{F}_*(V).$$

- originally proposed by Luscher [Luscher, 2010]
- perfect trivialization: $S_{FT} = 0$

In this study,

- approximate the trivializing map by the Wilson flow
- $\bullet\,$ discretize the transformation with step of size ρ
- The number of integration steps for the discretized trivializing map is set to 1

2 Simulation Details

3 Measurements

4 Autocorrelation

5 Outlook

Lattice Parameters:

- on a lattice of size 32⁴
- β = 2.37

• with 2 + 1 Domain-Wall fermions of mass $m_l = 0.0047$, $m_s = 0.0186$ HMC Parameters:

- different ρ values: 0.1, 0.112, 0.124
- different gauge step sizes $\delta \tau_{G} = 1/48, 1/96$
- different fermion step sizes $\delta \tau_F$ = 1/24, 1/16, 1/12, 1/8

In the following, we focus on the runs with different flow parameters and $\delta\tau_{\rm G}$

ρ	0.0	0.1	0.112	0.124
$\delta \tau_G = 1/48$	233	230	188	230
$\delta \tau_G = 1/96$	401	232	229	229
$\delta \tau_G = 1/144$	-	230	-	-

Table: The number of configurations for each ensemble after thermalization

Machine

• Simulation is carried out on Frontier and Andes at Oak Ridge National Laboratory

Figure: Histories of dH for different runs

ρ	0.0	0.1	0.112	0.124
$\delta au_G = 1/48$	0.026(6)	0.006(6)	0.009(5)	0.03(1)
$\delta \tau_G = 1/96$	0.015(6)	0 ± 0.009	0.009(8)	0.017(7)
$\delta au_{G} = 1/144$	-	0 ± 0.008	-	-

Table: $\langle dH \rangle$ for different runs based on configurations with Metropolis step. $\delta \tau_F$ is fixed to 1/48.

2 Simulation Details

3 Measurements

Autocorrelation

5 Outlook

- The red line is an expected value of plaquette for this lattice from Ref. [Blum et al., 2016]
- Its value is 0.6388238(37).

Wilson flowed energies

• Comparison of Wilson flowed energy with different ρ values for different flow time (raw) and $\delta \tau_G = 1/48, 1/96$ (column)

- 2 Simulation Details
- 3 Measurements
- 4 Autocorrelation

5 Outlook

Notation

- Observable: A(x)
- Measurement: $a_i(x)$
- Volume Average: $\langle\!\langle A \rangle\!\rangle = (1/V) \sum_x A(x)$
- Ensemble Average: $a = \langle a_i(x) \rangle = \langle \langle \langle A \rangle \rangle$
- Autocovariance: $\Gamma^{V}(t) = \langle \langle \langle a_i \rangle \rangle \langle \langle a_{i+t} \rangle \rangle$
- Autocorrelation Coefficients (ACC): $\rho^{V}(t) = \Gamma^{V}(t)/\Gamma^{V}(0)$

Estimators:

- $\langle a(x) \rangle \rightarrow \bar{a}(x) = \frac{1}{T} \sum_{i=1}^{T} a_i(x)$
- T: length of Markov chain approximating the ensemble

Volume Autocorrelation

Figure: Autocorrelation coefficient (ACC) as a function of t for Wilson-flowed energy E16.

• Error via Madras-Sokal Approximation [Luscher, 2005]:

$$\langle \delta \bar{\rho}^{(V)}(t)^2 \rangle \simeq \frac{1}{N} \sum_{k=1}^{t+\Lambda} \left[\bar{\rho}^{(V)}(k+t) + \bar{\rho}^{(V)}(k-t) - 2\bar{\rho}^{(V)}(k)\bar{\rho}^{(V)}(t) \right]$$

• $\Lambda \ge 100$ gives a reasonable estimate of the error [Luscher, 2005]

Master-Field Technique

- Instead of ACC of the volume average (⟨A⟩⟩ = (1/V) ∑_x A(x), consider ACC of local observable A(x)
- Subtract the volume average: $A'(x) = A(x) \langle \langle A \rangle \rangle$
- Due to translational invariance, $\mu = \langle A'(x) \rangle = a a = 0$
- Denote autocovariance of A'(x) at x as $\Gamma'_x(t)$

Then,

$$\begin{aligned} \Gamma'_{x}(t) &= \langle (a'_{i}(x) - \mu)(a'_{i+t}(x) - \mu) \rangle \\ &= \langle a'_{i}(x)a'_{i+t}(x) \rangle \\ &= \langle (a_{i}(x) - \langle \langle a_{i} \rangle \rangle)(a_{i+t}(x) - \langle \langle a_{i+t} \rangle \rangle) \rangle \equiv \langle \mathcal{O}_{t}^{i}(x) \rangle \end{aligned}$$

- Approximate Γ'_x(t) by «Γ'(t)» [Lüscher, 2018]
- Also, $\mathcal{O}_t^i(x) \rightarrow \bar{\mathcal{O}}_t(x) \equiv \frac{1}{T-t} \sum_{i=1}^{T-t} \mathcal{O}_t^i(x)$
- Finally, $\rho(t) = \langle \langle \Gamma'(t) \rangle / \langle \langle \Gamma'(0) \rangle \rangle$

Error via Master-Field Approach

- Need: $\operatorname{Cov}[\langle\!\langle \bar{\mathcal{O}}_s \rangle\!\rangle, \langle\!\langle \bar{\mathcal{O}}_t \rangle\!\rangle] \equiv \langle [\langle\!\langle \bar{\mathcal{O}}_s \rangle\!\rangle \langle\!\mathcal{O}_s \rangle] [\langle\!\langle \bar{\mathcal{O}}_t \rangle\!\rangle \langle\!\mathcal{O}_t \rangle] \rangle = \frac{1}{V} \sum_{y} \langle [\bar{\mathcal{O}}_s(y) \langle\!\mathcal{O}_s \rangle] [\bar{\mathcal{O}}_t(0) \langle\!\mathcal{O}_t \rangle] \rangle \equiv \frac{1}{V} \sum_{y} C_{st}(y)$ [Bruno et al., 2023]
- Approximate $C_{st}(y)$ by

$$\langle\!\langle \mathcal{C}_{st}(y)\rangle\!\rangle = \frac{1}{V} \sum_{x} \delta \bar{\mathcal{O}}_{s}(x+y) \delta \bar{\mathcal{O}}_{t}(x), \ \delta \bar{\mathcal{O}}_{t}(x) \equiv \bar{\mathcal{O}}_{t}(x) - \langle\!\langle \bar{\mathcal{O}}_{t}\rangle\!\rangle$$

• Define
$$C_{st}(|y| \le R) \equiv \sum_{|y| \le R} C_{st}(y)$$

- Determine the value of R s.t. $C_{st}(|y| \le R)$ saturates
- Truncate the sum in $Cov[\langle\!\langle \bar{\mathcal{O}}_s \rangle\!\rangle, \langle\!\langle \bar{\mathcal{O}}_t \rangle\!\rangle]$ beyond R_{sat}

$$\begin{aligned} \mathsf{Var}[\rho(t))] &= (\rho(t))^2 \left(\frac{\mathsf{Var}[\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle^2} + \frac{\mathsf{Var}[\langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle^2} \\ &- 2 \frac{\mathsf{Cov}[\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle, \langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle \langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle} \right) \end{aligned}$$

Error via Master-Field Approach

Master-Field Error for 24-Blocked ACC (E Density) at t=5

Figure: R: Summation Radius, b: block size

S. Yamamoto

Effect of FTHMC with 2+1 Domain Wall Fer

Lattice 2024 17 / 26

- (日)

- Divide the MC into several bins
- Compute $\langle\!\langle \overline{\Gamma}(t) \rangle\!\rangle$ on each bin
- The estimator of the error of $\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle$ is standard deviation of the mean
- Lattice-correlation is irrelevant

Autocorrelation for Local Quantities

Master-Field ACC for 2⁴-Blocked E Density

Master Field ACC for E Density with n_{bin} = 4

< □ > < 同 > < 回 > < 回 > < 回 >

Autocorrelation Times

Estimates of exponential autocorrelation times τ_{exp} computed by fitting $e^{-t/\tau_{exp}}$ to the ACC for different Wilson flow time τ_W , ρ , and $\delta \tau_G$ values:

ρ	τ_W = 4	$\tau_W = 8$	τ_W = 12	$\tau_W = 16$
0.0	14.28	22.439	26.6961	27.822
0.100	11.2	17.3	20.628	21.68
0.112	10.87	15.62	17.97	19.2
0.124	10.14	14.8	16.96	17.68

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

ρ	$\tau_W = 4$	$\tau_W = 8$	$\tau_W = 12$	$\tau_W = 16$
0.0	14.0	22.768	27.613	29.6098
0.100	10.53	15.776	19.071	20.683
0.112	10.0	14.862	17.25	18.86
0.124	10.4	15.686	18.884	20.453

Table: Fixed $\delta \tau_G = 1/96$, varied Wilson flow time τ_W

S. Yamamoto

Autocorrelation Times

The ratios of τ_{exp} ($\rho = 0.0, \delta \tau_G = 1/48$) for HMC to τ_{exp} with other HMC parameters:

ρ	τ_W = 4	$\tau_W = 8$	τ_W = 12	τ_W = 16
0.100	1.275	1.2967	1.2942	1.2832
0.112	1.313	1.436	1.485	1.4487
0.124	1.408	1.516	1.574	1.5736

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

ρ	τ_W = 4	$\tau_W = 8$	τ_W = 12	$\tau_W = 16$
0.0	1.019	0.9855	0.96681	0.93961
0.100	1.356	1.4224	1.3998	1.3451
0.112	1.428	1.5098	1.5476	1.4754
0.124	1.373	1.4305	1.4137	1.3603

Table: Fixed $\delta \tau_G = 1/96$, varied Wilson flow time τ_W

- 2 Simulation Details
- 3 Measurements
- 4 Autocorrelation

- FTHMC is shown to reduce autocorrelation times by a factor of around 1.5 as compared to HMC
- Master-Field technique allows us to measure autocorrelation coefficients based on a small number of configurations
- There is an ongoing effort to reduce the computational overhead from field-transformation part of the algorithm
- Prepare production runs at physical quark masses where fermion force calculation dominates simulation cost
- At physical pion mass, we then expect to see full improvement of HMC simulation by a factor of around 1.5
- Generate ensemble with different parameters (*beta*, the number of trivializing steps, etc...)

Thank you!

- Blum, T. et al. (2016).

Domain wall QCD with physical quark masses. *Phys. Rev. D*, 93(7):074505.

- Bruno, M., Cè, M., Francis, A., Fritzsch, P., Green, J. R., Hansen, M. T., and Rago, A. (2023).
 Exploiting stochastic locality in lattice QCD: hadronic observables and their uncertainties.
 JHEP, 11:167.
- Luscher, M. (2005).

Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD. *Comput. Phys. Commun.*, 165:199–220.

Luscher, M. (2010).

Trivializing maps, the Wilson flow and the HMC algorithm. *Commun. Math. Phys.*, 293:899–919.

- At the current setup ($m_{\pi} \approx 400$ MeV), the overhead due to computation of Jacobian force from the trivializing map is comparable to that of fermion force calculation
- We expect: at physical pion mass, fermion force calculation is much more computationally expensive than Jacobian force calculation
- We are optimizing the code so that Jacobian force routine is improved by a factor of 4
- At physical pion mass, we then expect to see full improvement of HMC simulation by a factor of around 1.5

	HMC	ρ = 0.1	$\rho = 0.112$	ρ = 0.124
$\delta \tau_G = 1/48$	0.929(6)	0.944(5)	0.935(6)	0.924(6)
$\delta \tau_G = 1/96$	-	0.956(4)	0.944(5)	0.94(5)

Table: $\langle P_{\rm acc} \rangle$ for runs with and without FT.