Effect of FTHMC with 2+1 Domain Wall Fermions on Autocorrelation Times via Master-Field Technique

S. Yamamoto¹ P. A. Boyle¹ T. Izubuchi¹ L. Jin² N . Matsumoto³

¹ Brookhaven National Laboratory

²Department of Physics University of Connecticut

³Department of Physics University of Boston

Lattice 2024

1 [Field Transformation](#page-2-0)

2 [Simulation Details](#page-4-0)

3 [Measurements](#page-8-0)

←□

Table of Contents

1 [Field Transformation](#page-2-0)

[Simulation Details](#page-4-0)

[Measurements](#page-8-0)

[Autocorrelation](#page-11-0)

[Outlook](#page-21-0)

 \leftarrow \Box

э \rightarrow

Field-Transformed HMC

With $U = \mathcal{F}_t(V)$,

$$
Z = \int \mathcal{D}U e^{-S(U)} = \int \mathcal{D}V \text{Det}[\mathcal{F}_*(V)] e^{-S(\mathcal{F}(V))} = \int \mathcal{D}V e^{-S_{FT}(V)}
$$

$$
S_{FT} = S(\mathcal{F}_t(V)) - \ln \text{Det}\mathcal{F}_*(V).
$$

- originally proposed by Luscher [\[Luscher, 2010\]](#page-23-0)
- **•** perfect trivialization: $S_{FT} = 0$

In this study,

- approximate the trivializing map by the Wilson flow
- **•** discretize the transformation with step of size ρ
- The number of integration steps for the discretized trivializing map is set to 1

[Field Transformation](#page-2-0)

2 [Simulation Details](#page-4-0)

[Measurements](#page-8-0)

[Autocorrelation](#page-11-0)

[Outlook](#page-21-0)

 \leftarrow \Box

э \rightarrow

Lattice Parameters:

- \bullet on a lattice of size 32⁴
- \bullet β = 2.37

• with $2 + 1$ Domain-Wall fermions of mass $m_l = 0.0047$, $m_s = 0.0186$ HMC Parameters:

- different ρ values: 0.1, 0.112, 0.124
- different gauge step sizes $\delta \tau_G = 1/48, 1/96$
- different fermion step sizes $\delta \tau_F = 1/24, 1/16, 1/12, 1/8$

In the following, we focus on the runs with different flow parameters and $\delta\tau_G$

つひひ

Table: The number of configurations for each ensemble after thermalization

Machine

Simulation is carried out on Frontier and Andes at Oak Ridge National Laboratory

Figure: Histories of dH for different runs

Table: $\langle dH \rangle$ for different runs based on configurations with Metropolis step. $\delta \tau_F$ is fixed to 1/48.

 \leftarrow \Box

[Field Transformation](#page-2-0)

[Simulation Details](#page-4-0)

3 [Measurements](#page-8-0)

[Autocorrelation](#page-11-0)

[Outlook](#page-21-0)

 \leftarrow \Box

э \rightarrow

- The red line is an expected value of plaquette for this lattice from Ref. [\[Blum et al., 2016\]](#page-23-1)
- Its value is $0.6388238(37)$.

Wilson flowed energies

• Comparison of Wilson flowed energy with different ρ values for different fl[o](#page-9-0)w ti[m](#page-11-0)e (raw) a[n](#page-7-0)d $\delta \tau_G = 1/48, 1/96$ $\delta \tau_G = 1/48, 1/96$ [\(c](#page-11-0)o[lu](#page-10-0)mn[\)](#page-8-0)

 QQ

[Field Transformation](#page-2-0)

[Simulation Details](#page-4-0)

[Measurements](#page-8-0)

[Outlook](#page-21-0)

 \leftarrow \Box

э \sim 41

Notation

- \bullet Observable: $A(x)$
- Measurement: $a_i(x)$
- Volume Average: $\langle A \rangle = (1/V) \sum_{x} A(x)$
- Ensemble Average: $a = \langle a_i(x) \rangle = \langle \langle A \rangle \rangle$
- Autocovariance: $\Gamma^V(t) = \langle \langle a_i \rangle \rangle \langle a_{i+t} \rangle$
- Autocorrelation Coefficients (ACC): $\rho^V(t)$ = Γ $^V(t)/\Gamma^V(0)$

Estimators:

- $\langle a(x) \rangle \rightarrow \bar{a}(x) = \frac{1}{T} \sum_{i=1}^{T} a_i(x)$
- \bullet T: length of Markov chain approximating the ensemble

つひひ

Volume Autocorrelation

Figure: Autocorrelation coefficient (ACC) as a function of t for Wilson-flowed energy E16.

Error via Madras-Sokal Approximation [\[Luscher, 2005\]](#page-23-2):

$$
\langle \delta \bar{\rho}^{(V)}(t)^2 \rangle \simeq \frac{1}{N} \sum_{k=1}^{t+\Lambda} \Big[\bar{\rho}^{(V)}\big(k+t\big) + \bar{\rho}^{(V)}\big(k-t\big) - 2 \bar{\rho}^{(V)}\big(k\big) \bar{\rho}^{(V)}(t) \Big]
$$

• $\Lambda \geq 100$ gives a reasonable estimate of the error [\[Luscher, 2005\]](#page-23-2)

Master-Field Technique

- Instead of ACC of the volume average $\langle A \rangle = (1/V) \sum_{x} A(x)$, consider ACC of local observable $A(x)$
- Subtract the volume average: $A'(x) = A(x) \langle\!\langle A \rangle\!\rangle$
- Due to translational invariance, $\mu = \langle A'(x) \rangle = a a = 0$
- Denote autocovariance of $A'(x)$ at x as $\Gamma'_x(t)$

o Then.

$$
\Gamma'_{x}(t) = \langle (a'_{i}(x) - \mu)(a'_{i+t}(x) - \mu) \rangle
$$

= $\langle a'_{i}(x)a'_{i+t}(x) \rangle$
= $\langle (a_{i}(x) - \langle a_{i} \rangle)(a_{i+t}(x) - \langle a_{i+t} \rangle) \rangle \equiv \langle O_{t}^{i}(x) \rangle$

Approximate $\Gamma'_x(t)$ by $\langle \hspace{-0.2em} \langle \Gamma'(t) \rangle \hspace{-0.2em} \rangle$ [Lüscher, 2018]

- Also, $\mathcal{O}_t^i(x) \to \bar{\mathcal{O}}_t(x) \equiv \frac{1}{\tau-t} \sum_{i=1}^{\tau-t} \mathcal{O}_t^i(x)$
- Finally, $\rho(t) = \langle \langle \Gamma'(t) \rangle \rangle / \langle \langle \Gamma'(0) \rangle \rangle$

Error via Master-Field Approach

- $\mathsf{Need}\colon \mathsf{Cov}[\langle\!\langle\bar{\mathcal{O}}_s\rangle\!\rangle, \langle\!\langle\bar{\mathcal{O}}_t\rangle\!\rangle\!]=\langle\!\langle\!\langle\langle\bar{\mathcal{O}}_s\rangle\!\rangle- \langle\mathcal{O}_s\rangle\!\rangle]\langle\!\langle\!\langle\bar{\mathcal{O}}_t\rangle\!\rangle- \langle\mathcal{O}_t\rangle\!\rangle\rangle=$ $\frac{1}{V} \sum_{y} \left\{ \left[\bar{\mathcal{O}}_s(y) - \langle \mathcal{O}_s \rangle \right] \left[\bar{\mathcal{O}}_t(0) - \langle \mathcal{O}_t \rangle \right] \right\} \equiv \frac{1}{V} \sum_{y} \mathcal{C}_{st}(y)$ [\[Bruno et al., 2023\]](#page-23-4)
- Approximate $C_{st}(y)$ by

$$
\langle\!\langle C_{st}(y)\rangle\!\rangle = \frac{1}{V}\sum_{x} \delta\bar{\mathcal{O}}_{s}(x+y)\delta\bar{\mathcal{O}}_{t}(x), \ \delta\bar{\mathcal{O}}_{t}(x) \equiv \bar{\mathcal{O}}_{t}(x) - \langle\!\langle \bar{\mathcal{O}}_{t} \rangle\!\rangle
$$

• Define
$$
C_{st}(|y| \leq R) \equiv \sum_{|y| \leq R} C_{st}(y)
$$

- Determine the value of R s.t. $C_{st}(|y| \leq R)$ saturates
- Truncate the sum in Cov $[\langle\!\langle \bar{\cal O}_s\rangle\!\rangle, \langle\!\langle \bar{\cal O}_t\rangle\!\rangle]$ beyond R_{sat}

$$
\text{Var}[\rho(t))] = (\rho(t))^2 \left(\frac{\text{Var}[\langle \langle \overline{\Gamma}(t) \rangle \rangle]}{\langle \langle \overline{\Gamma}(t) \rangle \rangle^2} + \frac{\text{Var}[\langle \langle \overline{\Gamma}(0) \rangle \rangle]}{\langle \langle \overline{\Gamma}(0) \rangle \rangle^2} -2 \frac{\text{Cov}[\langle \langle \overline{\Gamma}(t) \rangle \rangle, \langle \langle \overline{\Gamma}(0) \rangle \rangle]}{\langle \langle \overline{\Gamma}(t) \rangle \rangle \langle \langle \overline{\Gamma}(0) \rangle \rangle} \right)
$$

つひひ

Error via Master-Field Approach

Master-Field Frror for 2⁴-Blocked ACC (E Density) at t=5

Figure: R: Summation Radius, b: block size

S. Yamamoto **Effect of FTHMC with 2+1 Domain Wall Fermions Correlation Correlation Correlation Correlation Times Via Master-Field Technique Lattice 2024 17 / 26**

э

4 D F ∢●● 41 \rightarrow \mathcal{A} в QQQ

- Divide the MC into several bins
- Compute $\langle \overline{\Gamma}(t) \rangle$ on each bin
- The estimator of the error of $\langle \overline{\Gamma}(t) \rangle$ is standard deviation of the mean
- **•** Lattice-correlation is irrelevant

Autocorrelation for Local Quantities

Master-Field ACC for 2 ⁴-Blocked E Density

Master Field ACC for F Density with $n_{\text{min}} = 4$

 $A \Box B$ A

 QQ

Autocorrelation Times

Estimates of exponential autocorrelation times τ_{exp} computed by fitting $e^{-t/\tau_{\rm exp}}$ to the ACC for different Wilson flow time τ_W , ρ , and $\delta\tau_G$ values:

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

Tabl[e](#page-20-0): Fixed $\delta \tau_G = 1/96$, varied Wilso[n fl](#page-18-0)[ow](#page-20-0) [t](#page-18-0)[im](#page-19-0)e τ_W τ_W

Autocorrelation Times

The ratios of $\tau_{\text{exp}}(\rho = 0.0, \delta \tau_G = 1/48)$ for HMC to τ_{exp} with other HMC parameters:

Ω	$\tau_{W} = 4$	$\tau_W = 8$	$\tau_W = 12$	$\tau_W = 16$
0.100	1.275	1.2967	1.2942	1.2832
0.112	1.313	1.436	1.485	1.4487
0.124	1.408	1.516	1.574	1.5736

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

Table: Fixed $\delta \tau_G = 1/96$, varied Wilson flow time τ_W

[Field Transformation](#page-2-0)

- **[Simulation Details](#page-4-0)**
- **[Measurements](#page-8-0)**
- **[Autocorrelation](#page-11-0)**

 \leftarrow \Box

×. э \sim

- FTHMC is shown to reduce autocorrelation times by a factor of around 1.5 as compared to HMC
- Master-Field technique allows us to measure autocorrelation coefficients based on a small number of configurations
- There is an ongoing effort to reduce the computational overhead from field-transformation part of the algorithm
- Prepare production runs at physical quark masses where fermion force calculation dominates simulation cost
- At physical pion mass, we then expect to see full improvement of HMC simulation by a factor of around 1.5
- **•** Generate ensemble with different parameters (beta, the number of trivializing steps, etc...)

Thank you!

Blum, T. et al. (2016).

Domain wall QCD with physical quark masses. Phys. Rev. D, 93(7):074505.

歸 Bruno, M., Cè, M., Francis, A., Fritzsch, P., Green, J. R., Hansen, M. T., and Rago, A. (2023). Exploiting stochastic locality in lattice QCD: hadronic observables and their uncertainties. JHEP, 11:167.

晶 Luscher, M. (2005).

Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD. Comput. Phys. Commun., 165:199–220.

Luscher, M. (2010).

Lüscher, M. (2018).

Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. Phys., 293:899–919.

- At the current setup ($m_{\pi} \approx 400$ MeV), the overhead due to computation of Jacobian force from the trivializing map is comparable to that of fermion force calculation
- We expect: at physical pion mass, fermion force calculation is much more computationally expensive than Jacobian force calculation
- We are optimizing the code so that Jacobian force routine is improved by a factor of 4
- At physical pion mass, we then expect to see full improvement of HMC simulation by a factor of around 1.5

Table: $\langle P_{\text{acc}} \rangle$ for runs with and without FT.

 \leftarrow \Box

 $\left\langle 1\right\rangle$ э D.