Lattice 2024

Contribution ID: 294 Type: Talk

Effective mass-improvement of heavy valence Wilson quarks

Monday, 29 July 2024 11:15 (20 minutes)

We extend an established strategy to non-perturbatively determine mass-improvement coefficients for heavy valence Wilson fermions in $N_f=3$ massless QCD to effectively cancel higher-order mass-dependent cutoff effects. Using Schrödinger functional simulations in physical volumes of $L\simeq 0.25, 0.5$ fm we test our strategy by simulating relativistic b-quarks at lattice spacings of $0.008 \le a/{\rm fm} \le 0.021$, and compare it to results obtained with the traditional method for tuning the b-quark hopping parameter. The new strategy significantly enhances the window for which a predominantly $O(a^2)$ scaling behaviour of physical quantities is observed, comparable to that of massless sea quarks.

Primary authors: HEITGER, Jochen (University of Muenster, ITP); FRITZSCH, Patrick (Trinity College

Dublin); KUBERSKI, Simon (CERN)

Presenter: FRITZSCH, Patrick (Trinity College Dublin) **Session Classification:** Theoretical developments

Track Classification: Theoretical Developments