
Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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gauge group

SU(3) × SU(2) × U(1)

We need to develop equilibrium and non-equilibrium thermodynamics 
within the Hamiltonian framework of gauge theories.

Ultimate goal: Quantum simulation of Standard Model
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Total Hamiltonian: HS∪R = HS + HR + VS∪R

Weak-coupling thermodynamics

- First law of thermodynamics: .ΔUS = W + Q

Free energy: FS = US − β−1𝒮 = − β−1 ln(ZS)
with .ZS = TrS(e−βHS)HR

HS

Interactions between system and 
reservoir contribute negligibly to 
system’s internal energy: .US = ⟨HS⟩

- Second law of thermodynamics: .ΔFS ≤ W

Need to satisfy:

HR

HS

VS∪R



A solution: Define a Hamiltonian of mean 

force: .H*S = − β−1 ln ( TrR(e−βHS∪R)
TrR(e−βHR) )

HR

HS

VS∪R Interactions between system and 
reservoir contribute non-negligibly to 
system’s internal energy: US = ?

Total Hamiltonian: HS∪R = HS + HR + VS∪R

ii)  with .FS = − β−1 ln(Z*S ) Z*S = TrS(e−βH*S )

i) ,US = ⟨H*S ⟩

ZD, Jarzynski, Mueller, Oruganti, Powers, and 
Yunger Halpern, manuscript in progress (2024).

Other choices exist too. Equivalent 
classically, but not necessarily quantumly! 

Then define:

Strong-coupling thermodynamics

Rivas,  Phys.  Rev.  Lett.  124,  160601 
(2020), Anto-Sztrikacs et. al. PRX Quantum 
4, 020307 (2023), Miller and Anders Phys. 
Rev. E 95, 062123 (2017), Strasberg and 
Esposito, Phys. Rev. E 99, 012120 (2019).
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FIG. 1. Overview of relevant quench protocol. The system starts in a global Gibbs state. At t = 0, the system Hamiltonian
HS is quenched instantaneously. Under the new total Hamiltonian, the system-reservoir composite equilibrates to a global
Gibbs state with the initial state’s temperature.

TrR(e��HS[R(t)) in Eq. (2). During the quench, �US

equals the work absorbed by S:

W := TrS(⇢
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During the equilibration, �US equals the heat absorbed
by S:

Q := TrS(⇢
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(t = 0+)) � TrS(⇢
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S
H

⇤
S
(t = 0+)) . (6)

These definitions are intuitive and obey the first and sec-
ond laws of thermodynamics [52]. Upon identifying a
Hamiltonian of the form in Eq. (1), one calculates work
and heat by measuring hH⇤

S
i. We show next how to mea-

sure this quantity.
Measuring thermodynamic quantities in quantum sim-

ulations.—Here, we derive a relation between strong-
coupling-thermodynamics quantities and a quantity
called the entanglement Hamiltonian. Every density ma-
trix ⇢ can be expressed as ⇢ =

P
k
pk|kihk|. The |ki de-

note eigenstates; and the pk 2 [0, 1], probabilities. Define
�k := � ln(pk) � 0, such that ⇢ =

P
k
e
��k |kihk|. This

expansion has (almost) the form of an thermal state, at
unit temperature. (The normalization factor has been
absorbed into the e

��ks.) For ⇢ = ⇢S := TrR(⇢S[R),
this Hamiltonian is the (bipartite) entanglement Hamil-
tonian [67, 68],

H
ent

S
:= � ln(⇢S) . (7)

This operator contains more information than the bi-
partite entanglement entropy. It has spawned numerous
studies in quantum information theory and many-body
physics. Parameterized ansatze for entanglement Hamil-
tonians [68], with random-measurement protocols [87–
90], enable tomography of ground and nonequilibrium
states [69–71, 91, 92], including of LGTs [72, 93, 94].

To leverage such tomography tools, we prove a relation
between H

ent

S
and H

⇤
S
for thermal states. We rewrite the

Hamiltonian of mean force as
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The system’s reduced state is ⇢S = ⇡S :=
TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
Hamiltonian of mean force:

H
⇤
S
=

1

�
H

ent

S
+ FS . (9)

IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the

aforementioned tomography tools. To calculate FS ,
one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
the second term in Eq. (9), we study the average dissi-
pated work, Wdiss := W � �FS , a measure of entropy
production [99, 100]. For our quench protocol,

Wdiss =
1

�
TrS(⇢

i

S

⇥
H

ent

S
(t=0+) � H

ent

S
(t=0�)

⇤
) . (10)

Hence, one can compute Wdiss upon measuring the en-
tanglement Hamiltonian alone.
Lattice gauge theories and strong-coupling quantum

thermodynamics.—We use the Hamiltonian formulation
of LGTs [12], which suits quantum simulation. As matter
and gauge fields undergo local symmetry-group transfor-
mations, the observables remain invariant. The symme-
try restricts the states to a physical subspace: for each
site n, a Gauss-law operator Gn acts on n and commutes
with the Hamiltonian. The full Hilbert space (spanned
by eigenbases of electric and matter fields) decomposes
into Gn eigenspaces, for each n. The eigenspace labeled
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Quantum quenches: Simplest non-equilibrium experiments.
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This operator contains more information than the bi-
partite entanglement entropy. It has spawned numerous
studies in quantum information theory and many-body
physics. Parameterized ansatze for entanglement Hamil-
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The system’s reduced state is ⇢S = ⇡S :=
TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
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H
⇤
S
=

1

�
H

ent

S
+ FS . (9)

IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the

aforementioned tomography tools. To calculate FS ,
one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
the second term in Eq. (9), we study the average dissi-
pated work, Wdiss := W � �FS , a measure of entropy
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Hence, one can compute Wdiss upon measuring the en-
tanglement Hamiltonian alone.
Lattice gauge theories and strong-coupling quantum

thermodynamics.—We use the Hamiltonian formulation
of LGTs [12], which suits quantum simulation. As matter
and gauge fields undergo local symmetry-group transfor-
mations, the observables remain invariant. The symme-
try restricts the states to a physical subspace: for each
site n, a Gauss-law operator Gn acts on n and commutes
with the Hamiltonian. The full Hilbert space (spanned
by eigenbases of electric and matter fields) decomposes
into Gn eigenspaces, for each n. The eigenspace labeled
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The system’s reduced state is ⇢S = ⇡S :=
TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
Hamiltonian of mean force:
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IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the

aforementioned tomography tools. To calculate FS ,
one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
the second term in Eq. (9), we study the average dissi-
pated work, Wdiss := W � �FS , a measure of entropy
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Hence, one can compute Wdiss upon measuring the en-
tanglement Hamiltonian alone.
Lattice gauge theories and strong-coupling quantum

thermodynamics.—We use the Hamiltonian formulation
of LGTs [12], which suits quantum simulation. As matter
and gauge fields undergo local symmetry-group transfor-
mations, the observables remain invariant. The symme-
try restricts the states to a physical subspace: for each
site n, a Gauss-law operator Gn acts on n and commutes
with the Hamiltonian. The full Hilbert space (spanned
by eigenbases of electric and matter fields) decomposes
into Gn eigenspaces, for each n. The eigenspace labeled

Quantum quenches: Simplest non-equilibrium experiments.
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The system’s reduced state is ⇢S = ⇡S :=
TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
Hamiltonian of mean force:

H
⇤
S
=

1

�
H

ent

S
+ FS . (9)

IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the

aforementioned tomography tools. To calculate FS ,
one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
the second term in Eq. (9), we study the average dissi-
pated work, Wdiss := W � �FS , a measure of entropy
production [99, 100]. For our quench protocol,
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Hence, one can compute Wdiss upon measuring the en-
tanglement Hamiltonian alone.
Lattice gauge theories and strong-coupling quantum

thermodynamics.—We use the Hamiltonian formulation
of LGTs [12], which suits quantum simulation. As matter
and gauge fields undergo local symmetry-group transfor-
mations, the observables remain invariant. The symme-
try restricts the states to a physical subspace: for each
site n, a Gauss-law operator Gn acts on n and commutes
with the Hamiltonian. The full Hilbert space (spanned
by eigenbases of electric and matter fields) decomposes
into Gn eigenspaces, for each n. The eigenspace labeled

Quantum quenches: Simplest non-equilibrium experiments.
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The system’s reduced state is ⇢S = ⇡S :=
TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
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IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the
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one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
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tanglement Hamiltonian alone.
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of LGTs [12], which suits quantum simulation. As matter
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TrR(e��HS[R)/ZS[R. Using Eqs. (7) and (3) yields the
relation between the entanglement Hamiltonian and the
Hamiltonian of mean force:
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IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the
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one must calculate partition functions (classically or via
quantum simulation), which can be costly [95–98], de-
manding access to DOFs outside S. To avoid computing
the second term in Eq. (9), we study the average dissi-
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Hence, one can compute Wdiss upon measuring the en-
tanglement Hamiltonian alone.
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thermodynamics.—We use the Hamiltonian formulation
of LGTs [12], which suits quantum simulation. As matter
and gauge fields undergo local symmetry-group transfor-
mations, the observables remain invariant. The symme-
try restricts the states to a physical subspace: for each
site n, a Gauss-law operator Gn acts on n and commutes
with the Hamiltonian. The full Hilbert space (spanned
by eigenbases of electric and matter fields) decomposes
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Work:

Heat:

Work and heat in quantum quenches:

These definitions are consistent with first and second laws, both classically and 
quantumly.

ZD, Jarzynski, Mueller, Oruganti, Powers, and Yunger Halpern, manuscript in progress (2024).

In summary:



Why does this matter? Because there are efficient tools for entanglement 
tomography (at least for ground, excited, and non-equilibrium states).

Can these be measured in quantum-simulation experiments?

Define the entanglement Hamiltonian:  with .Hent = − ln(ρS) ρS = TrR(ρS∪R)

Entanglement spectrum: informs thermalization dynamics or distinguishes 
topological phases. 

We prove that:

The quantity dissipated work  can then be shown to be equal to 
 in our quench process!

Wdiss = W − ΔFS
β−1Hent

ZD, Jarzynski, Mueller, Oruganti, Powers, and Yunger Halpern, arXiv:2404.02965 [quant-ph].

.H*S = β−1Hent + FS

See e.g., Mueller, Zache, Ott, Phys. Rev. Lett. 129 (2022) 1, 011601, 
Mueller, Wang, Katz, ZD, Cetina, arXiv:2408.00069 [quant-ph].

Some examples in: Elben, Flammia, Huang, Kueng, Preskill, Vermersch, and Zoller, Nature Review Physics (2022).



Example: Entanglement tomography in a (2+1)D  gauge theoryZ2

Randomized measurements allow optimizing parameters of a motivated entanglement 
Hamiltonian ansatz.…

2

FIG. 1. Overview of the experiment and the entanglement-Hamiltonian tomography. (a) Schematic of the trapped-ion exper-
iment: 15 optically-controlled ions in a linear trap realize a universal digital quantum computer. Single-qubit and all-to-all
two-qubit gates are implemented by an array of individually-focused laser beams (blue, vertical) and a global laser beam (blue,
horizontal). Purple beams indicate the operation of a two-qubit gate that entangles the corresponding ions’ internal states. (b)
Schematic of the randomized-measurement protocol for entanglement-Hamiltonian tomography. This protocol extracts a classi-
cal approximation of a reduced density matrix associated with the quantum state | (t)i, from which the presence or absence of
quantum chaos is inferred. The protocol consists of measuring observables in a single-qubit randomized basis, then classically
learning the entanglement Hamiltonian HE({�i}) , which parameterizes the reduced quantum state with parameters {�i} to
optimally reproduce all measurements. The statistical behavior of the eigenvalue spectrum of the entanglement Hamiltonian
is then analyzed: eigenvalue repulsion indicates quantum chaos, as detailed in the main text.

namics of gauge theories, e.g., in early universe and in
high-energy particle collisions, remains challenging us-
ing first-principles simulation methods [17]. As a first
step in experimentally probing thermalization dynamics
of gauge theories, we study a Z2 lattice gauge theory
(LGT) in 2 + 1 spacetime dimensions [62–64] using a
digital trapped-ion quantum computer [63, 65–67]. We
use a chain of fifteen 171Yb+ ions to realize a general-
purpose fully-connected digital quantum computer with
twelve qubits, and use this computer to natively and ac-
curately encode an initial state, evolve it in time, and
measure final observables.

Our analysis relies on EH tomography [68–73] in com-
bination with randomized-measurement protocols [74–
85] to learn classical representations approximating
nonequilibrium states. The EH is defined as HE ⌘

� log(⇢A), where ⇢A denotes the reduced density matrix
formed by bipartitioning a (pure) quantum state. The
utility of EH as a theoretical and experimental tool stems
from the observation that, in many cases, it consists of
approximately local operators [86, 87]. This resemblance
to conventional Hamiltonians, i.e., energy operators gov-
erning system dynamics, enables the utilization of a wide
toolkit. If an EH is (k-)local, it can be parameterized
by polynomially many parameters as a function of the
system size, unlike the matrix ⇢A which requires expo-
nentially many parameters.

Randomized-measurement protocols [85] can be used
to learn the EH: after repeatedly preparing and then mea-
suring a quantum state in a randomly chosen basis, one
can fit a parameterized EH to the obtained data. Be-
cause the spectrum of HE, known as the entanglement
spectrum, scales logarithmically with the Schmidt eigen-
values of ⇢A, learning an EH with su�cient accuracy to
reproduce the entire entanglement spectrum is di�cult.
Randomized measurement protocols may require resolv-

ing exponentially small probabilities even for relatively
small systems, which is out of reach of current quan-
tum devices and perhaps fault-tolerant devices, too. The
present experiments can therefore only aim at approx-
imating HE and accurately reproducing its low-energy
spectrum. Applications of this approach include the ver-
ification of topological phases [41, 82].

Nonetheless, what if the precise quantitative structure
of HE were not crucial, but only its statistical proper-

ties were? This viewpoint is that of random matrix
theory [88, 89], where metrics like level distribution and
spectral form factor di↵erentiate between integrable and
chaotic dynamics, while being indi↵erent to quantitative
details, with the notable exception of symmetries. This
statistical perspective underpins our study. Guided by
physical insights regarding the expected operator con-
tent of a nonequilibrium EH, we ask whether one can
learn, from experimental data, a classical representation
of a state to answer a simpler question: does a quantum
state exhibit universal signatures of quantum chaos evi-
dent in the statistical properties of its EH? Crucially, can
we discern this scenario from one where the state lacks
chaotic behavior?

To answer these questions, we focus on two observ-
ables indicative of quantum ergodic and chaotic behav-
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…and obtain the gap-ratio distribution of entanglement spectrum,

which signal chaotic behavior, hence thermalization, as system evolves after a quench!

Mueller, Wang, Katz, ZD, Cetina, arXiv:2408.00069 [quant-ph].
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FIG. 4. Statistics of the gap ratios of the spectrum of the entanglement Hamiltonian. (a) Time evolution of the average gap
ratio averaged over 6 randomly-drawn initial states and all symmetry sectors. The horizontal lines represent the averages for
non-repulsive (Poisson, blue dotted) and repulsive (GUE, red dashed) distributions. Error bars indicate standard deviation over
initial states and symmetry sectors. (b) Distribution of the entanglement-spectrum gap ratios, combined across 6 randomly-
drawn initial states, all symmetry sectors, and all times in each of the regimes (I), (II), and (III). A total of 504, 504 and
336 gaps are quantum-computed, and the average is shown in orange, along with simulated Bisognano-Wichmann results in
the limit of infinite measurements in cyan, and the exact distributions in black. Blue-dotted and red-dashed curves represent
Poisson and GUE distributions.

discernible as the observed average gap ratio hri evolves
from ⇡ 0.4 predicted for a non-repulsive Poisson distri-
bution (blue dashed line) towards ⇡ 0.6 characteristic of
repulsive level statistics of a Gaussian Unitary Ensemble
(GUE) [38]. Three time regimes (I), (II), and (III) are
identified that correspond, respectively, to the evolution
of the predicted average gap-ratio toward the Poisson dis-
tribution value, toward the GUE value, and to saturation
at the GUE value.

In Fig. 4(b) we plot, for the three ranges of evolution
times, the corresponding normalized distribution of the
gap ratios, P̄ (r), combined over 6 random initial states
and 4 symmetry sectors. We observe a clear transition
from early-time non-repulsion (Poisson distribution, blue
dotted line) in regime (I) to level repulsion (Gaussian
Unitary Ensemble, red) in regime (III). At intermediate
times, a distribution is observed between the initial ab-
sence of level repulsion and the subsequent emergence of
level repulsion. Error bars and bands denote the vari-
ance resulting from averaging over symmetry sectors and
initial states. The predicted exact distribution (black
line) exhibits a sharper peak around zero at the ear-
liest times due to the reduced density matrix not be-
ing full rank. Conversely, the BW-inspired ansatz (cyan
line) generally parametrizes a full-rank matrix unless cou-
plings are very finely tuned, resulting in an overestima-
tion of level repulsion in the initial stages. Calculations
indicate that the onset of the three regimes remains con-
sistent for any randomly chosen initial condition and de-
pends only on the (subsystem-)size when measured in
coupling-independent units gt.

In Fig. 5 we plot the ESSF reconstructed from the data
used in Fig. 4. The three panels of the plot correspond
to the the three time regimes discussed in relation to the
EGRD evolution. The displayed theory curves are aver-
aged over initial states, symmetry sectors, and each of
the three time ranges. Starting from an initial flat be-
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FIG. 5. Entanglement spectral form factor. The average en-
tanglement spectral form factor across various initial states,
symmetry sectors, and three distinct regimes (I), (II), and
(III) identified in Fig. 4. The figures display exact results
(black curves), infinite-measurement outcomes (cyan), and
quantum-computed experimental data (orange). In panel
(III), a purple dotted line indicates a fit of the ramp observed
in the quantum-computed data. Our normalization ensures
hF(0)i = 1, with the plateau occurring at hF(1)i = 1/ds,
where ds denotes the dimension of a symmetry block, see
Appendix B for details. Shaded areas indicate the standard
deviation over initial states, symmetry sectors and times.

havior of the ESSR as a function of ✓ in panel (I), our
data in panels (II) and (III) clearly show the buildup
of a ramp-plateau structure, indicating ergodic behav-
ior. In panel (III), we show a fit (purple dotted line) to
the observed ramp, indicating a power-law behavior ✓

where  = 0.6 ± 0.2, where the fit error is determined
by changing the fit regime. This exponent is consistent
with the results obtained from the numerical analysis of
a significantly larger system in Appendix B.

Our results demonstrate that, using observables that
reveal universal statistical or global features of entangle-
ment spectrum, the onset of chaotic behavior can be ro-
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resources required to make predictions at a given level of precision.

Sidebar 2: Foundations of the KS Hamiltonian and its mapping to quantum devices

In the KS Hamiltonian, lattice elements include the link operator Û , plaquette operator ( ), fermion ( ̂, ) kinetic,
interaction ( ), and mass terms, and the Gauss’s law constraint ( ). The connectivity and dimensionality of the
electric (E) basis representations is utilized to digitize links, as proposed by Byrnes and Yamamoto [124]. For SU(3),
link states that run between sites are |R, (T, T z

, Y )(c)L , (T, T z
, Y )(c)R i, where the labels define orientations in the left

and right color spaces, denoted by color-isospin, its third component, and color-hypercharge. R is the SU(3) irreducible
representation of the link (common to both ends), which can also be denoted by the number of up and down indices
(p, q) of the associated tensor representation. The maximum values of TL,R, T z

L,R and YL,R are bounded for a given
R. For a 3+1D simulation, each lattice site contains the “intersection” of three left-states and three right-states that
combine to satisfy Gauss’s law. The plaquette operators act on four link states around a closed path, transforming as a
Gauss’s law preserving color singlet at each lattice site, but acting as a 3 or 3 on each link. Each of the integers defining
the state of each link are mapped to qubit registers. For example, accommodating irreps with p, q  2 requires two
registers with two qubits. The maximal isospin in these irreps is T = 2 with |Tz|  2 and |Y |  2, each requiring its
own register of qubits. On one spatial (two staggered) sites for two-flavor (up and down quarks) QCD, the Hilbert space
content of Ĥ is mapped to 12 qubits [123].

The basic workflow of a quantum simulation consists of three parts: preparation of a non-trivial initial state, unitary time
evolution, and measurement of desired physics observables. For example, when aiming to simulate particle collisions, this
workflow may translate to the preparation of wavepackets on top of a non-trivial vacuum, evolving the wavepackets to a region
where they interact and subsequently separate, and finally measuring properties of asymptotic states, as would be observed by
laboratory detectors [143]. The preparation of arbitrary initial states is generically QMA-Complete [144–146]. Recent progress
in developing state preparation techniques include adiabatically approaching states of a target theory from those of a simpler
theory [147], adiabaticity-violating processes such as quenched dynamics, imaginary-time evolution [148–151], and variational
procedures that may incorporate global entangling operators [152–154]. Quantum algorithms for preparing thermal states
or evaluating thermal expectation values for field theories have also been developed [155–157]. However, more research is
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Hamiltonian formulation of lattice gauge theories

Bi-partitining the system into subsystem and reservoir is non-trivial in LGTs. Think 
about imposing the constraint via

H′ S∪R = HS∪R + κ∑
x

f(G(x))

Hence, we posit that LGT thermodynamics may need to be studied within the strong-
coupling framework.

by choosing  such that dynamics under  is constrained to the physical sector.  κ H′ S∪R

ZD, Jarzynski, Mueller, Oruganti, Powers, and Yunger Halpern, arXiv:2404.02965 [quant-ph].
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FIG. 2. (a) Partitioning of DOFs into system (S) and reservoir (R) DOFs. Partitioning of total Hamiltonian’s (b) hopping
terms, (c) electric-field terms, and (d) mass and chemical-potential terms into HS(t) (teal), HR (light red), and VS[R (purple).
Matter (gauge-field) DOFs reside on lattice sites (links). The last link wraps around to indicate the lattice’s periodicity.

by some eigenvalue g, and shared by all the Gn, is the
physical subspace.[101] That is, for any physical state
| physi,

Gn| physi = g| physi , 8n . (11)

In electrodynamics, Gn = r · En � ⇢n. En denotes the
electric field, and ⇢n denotes the (dynamical) electric-
charge density, both at site n. Gauss’s law follows from
setting g = 0 (g 6= 0) in Eq. (11) in the absence (presence)
of a background static electric charge.

One may impose Gauss’s laws by manually removing
the unphysical states from the full Hilbert space [102,
103]. Alternatively, the Hamiltonian HS[R may be re-
placed with

H
0
S[R

= HS[R +
X

n

f(Gn) . (12)

f(Gn) denotes a function of Gauss-law operators. Cho-
sen properly, it penalizes transitions to unphysical
states [104–111]. Consider partitioning a lattice into a
system S and a reservoir R. Some Gauss-law penalty
terms act on both S and R: Gauss-law operators are
multibody operators consisting of gauge and matter
fields. Such penalty terms, thus, contribute to the VS[R

in Eq. (1). Their contribution must be large to constrain
the state to the physical subspace. Therefore, one can-
not generally neglect the internal energy’s dependence
on VS[R when computing thermodynamic quantities; see
Supplemental Material (SM) [112]. Consequently, LGTs
can be described within the framework of strong-coupling
thermodynamics.

Example of Z2 LGT coupled to matter in (1+1)D.—
Consider Z2 gauge fields (spin- 1

2
hardcore bosons) cou-

pled to matter fields (chosen to be spin- 1
2

hardcore

bosons). The initial state evolves under the Hamiltonian

H = Hh +He +Hm +Hµ +Hc
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on a one-dimensional N -site spatial lattice with peri-
odic boundary conditions (�N = �0). Hh, He, Hm, and
Hµ represent the matter-hopping, electric-field, matter-
mass, and matter-chemical-potential terms, respectively.
A constant term Hc is added such that HS(t), HR, and
HS[R(t) have non-negative eigenvalues. t, ✏, m, and µ

denote the hopping strength, electric-field strength, mat-
ter mass, and matter chemical potential, respectively.
Pauli operator �n acts on the Hilbert space of the site-n
matter field. Pauli operator �̃n acts on the Hilbert space
of the gauge field rightward of n. Specifically, �̃x

n
(�̃z

n
)

denotes the electric-field (gauge-link) operator.
The Z2 gauge transformation is generated by the

Gauss-law operator [113]

Gn = �̃
x

n
�̃
x

n�1
exp

✓
i⇡


�
+

n
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2
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. (14)

The physical states obey Eq. (11) with g = 1. One
can realize the gauge-invariant dynamics by addingP

n
f(Gn) = 

P
n
(1 � Gn) to H, then taking the limit

 ! 1 [114].
The lattice can be partitioned into a system S and a

reservoir R, as in Fig. 2(a). Also, the Hamiltonian (13)
decomposes as in Eq. (1). Some hopping terms act only
on sites in S (R) and so belong in HS (HR). Other
terms describe hopping between a site in S and a site in
R. These interaction terms belong in VS[R; see Fig. 2(b).
The electric-field Hamiltonian can be partitioned as fol-
lows; see Figure 2(c). Terms acting on links in S be-
long in HS(t). Terms acting on links in R, but touch-
ing the S-R boundary, belong in VS[R due to Gauss’s
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The physical states obey Eq. (11) with g = 1. One
can realize the gauge-invariant dynamics by addingP
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(1 � Gn) to H, then taking the limit
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The lattice can be partitioned into a system S and a

reservoir R, as in Fig. 2(a). Also, the Hamiltonian (13)
decomposes as in Eq. (1). Some hopping terms act only
on sites in S (R) and so belong in HS (HR). Other
terms describe hopping between a site in S and a site in
R. These interaction terms belong in VS[R; see Fig. 2(b).
The electric-field Hamiltonian can be partitioned as fol-
lows; see Figure 2(c). Terms acting on links in S be-
long in HS(t). Terms acting on links in R, but touch-
ing the S-R boundary, belong in VS[R due to Gauss’s
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sen properly, it penalizes transitions to unphysical
states [104–111]. Consider partitioning a lattice into a
system S and a reservoir R. Some Gauss-law penalty
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charge density, both at site n. Gauss’s law follows from
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fields. Such penalty terms, thus, contribute to the VS[R

in Eq. (1). Their contribution must be large to constrain
the state to the physical subspace. Therefore, one can-
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Example:  LGT in (1+1)D coupled to hardcore bosonic matterZ2

Bi-partition the full system to system and reservoir as:
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laws. Terms acting on links elsewhere in R belong in
HR. Terms in Hm and Hµ belong in HS(t) and HR, de-
pending on whether they act on a site in S or R; see Fig.
2(d). Finally, if penalty terms enforcing Gauss’s law act
at the boundary, they belong in VS[R. Otherwise, they
belong in HS or HR.

We quench the system’s chemical potential from µi = 0
to µf 6= 0. We further define the system’s chiral conden-
sate [115],

⌃ :=
1

NS

NS�1X

n=0

(�1)nh�+

n
�
�
n

i . (15)

NS denotes the system size. The expectation value is
computed in the final thermal state, whose µ = µf. If
µf � ✏,m, the system’s thermal state is dominated by the
matter fields’ all-spin-up state, yielding ⌃ = 0. At other
µf values, ⌃ could be nonvanishing. In fact, ⌃ suddenly
changes from finite to vanishing values as µf increases,
indicating a phase transition, as Fig. 3(a) shows. This
phase transition does not look perfectly sharp, due to
finite-temperature (see SM [112]) and finite-size e↵ects.
The critical value µf = µ

c

f
denotes the transition point at

which ⌃0 := d⌃/dµf is maximized.
Figure 3 displays thermodynamic quantities, calcu-

lated as functions of µf: Wdiss, W , Q, �FS , and �S.
As µf grows, Wdiss := W � �FS remains near zero until
around the µf value where the phase transition occurs.
Afterward, Wdiss increases. Hence Wdiss indicates the
phase transition clearly. Similarly, W (�Q) begins devi-
ating from �FS (�S) around the phase transition.

In SM [112], we apply weak-coupling quantum-
thermodynamics definitions, despite the couplings’ being
strong. As a result, we obtain di↵erent work and heat
values, which behave qualitatively di↵erently.

Outlook.—This work shows how strong-coupling quan-
tum thermodynamics applies to lattice gauge theories in
and out of equilibrium. The work further shows how
entanglement Hamiltonians can be leveraged to mea-
sure certain thermodynamic quantities in quantum sim-
ulations. Our framework may be applied to explore
further questions in the quantum thermodynamics of
gauge theories. Examples include whether thermody-
namic quantities signal topological [67, 116–123] or dy-
namical [124] phase transitions. While quench protocols
in LGTs have been implemented in experiments [72, 82–
84, 86, 105, 125–135], a longer-term vision is simulat-
ing particle collisions relevant to nuclear and high-energy
physics [136–141]. Hence one opportunity is to define the
heat and work exchanged in more-general processes, in-
cluding quantum-adiabatic ones. Also, non-Abelian and
higher-dimensional gauge theories merit studying within
our framework. Developing quantum-simulation proto-
cols for studying gauge-theory thermodynamics is an ac-
tive frontier, and this work furthers this goal.
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(Full weak-coupling except chiral condensate)

FIG. S3. Computing thermodynamic quantities using weak-coupling assumptions: For illustrative purposes, we make the
approximations (argued to be incorrect here) e

��H
⇤
S(t)

/Tr(e��H
⇤
S(t)) ⇡ e

��HS(t)
/Tr(e��HS(t)) and US(t) ⇡ hHS(t)i. Thermo-

dynamic quantities are plotted as functions of the final chemical potential, µf, during the instantaneous quench from µi = 0:
(a) Dissipated work Wdiss (solid, black) and chiral condensate ⌃ (dot-dashed, teal). (b) Work W (solid, black) and change
�FS in the system’s free energy (dotted, black). (c) Normalized heat �Q (solid, black) and change �S in the system’s entropy
(dotted, black). In all subfigures, we plot µ

c
f , the µf value where ⌃0 is maximized (dashed, gray). For these plots, N = 6,

NS = 4, t = �1/2, ✏ = 1/2, m = 1/2, µi = 0, and � = 10, as in Fig. 3.

⇤ davoudi@umd.edu
† cjarzyns@umd.edu
‡ niklasmu@uw.edu
§ gshivali@umd.edu
¶ cdpowers@umd.edu; corresponding author.

⇤⇤ nicoleyh@umd.edu
[S1] C. De Sa, Low-precision arithmetic, CS4787 Lecture 21, Cornell University (2020).

5

laws. Terms acting on links elsewhere in R belong in
HR. Terms in Hm and Hµ belong in HS(t) and HR, de-
pending on whether they act on a site in S or R; see Fig.
2(d). Finally, if penalty terms enforcing Gauss’s law act
at the boundary, they belong in VS[R. Otherwise, they
belong in HS or HR.

We quench the system’s chemical potential from µi = 0
to µf 6= 0. We further define the system’s chiral conden-
sate [115],

⌃ :=
1

NS

NS�1X

n=0

(�1)nh�+

n
�
�
n

i . (15)

NS denotes the system size. The expectation value is
computed in the final thermal state, whose µ = µf. If
µf � ✏,m, the system’s thermal state is dominated by the
matter fields’ all-spin-up state, yielding ⌃ = 0. At other
µf values, ⌃ could be nonvanishing. In fact, ⌃ suddenly
changes from finite to vanishing values as µf increases,
indicating a phase transition, as Fig. 3(a) shows. This
phase transition does not look perfectly sharp, due to
finite-temperature (see SM [112]) and finite-size e↵ects.
The critical value µf = µ

c

f
denotes the transition point at

which ⌃0 := d⌃/dµf is maximized.
Figure 3 displays thermodynamic quantities, calcu-

lated as functions of µf: Wdiss, W , Q, �FS , and �S.
As µf grows, Wdiss := W � �FS remains near zero until
around the µf value where the phase transition occurs.
Afterward, Wdiss increases. Hence Wdiss indicates the
phase transition clearly. Similarly, W (�Q) begins devi-
ating from �FS (�S) around the phase transition.

In SM [112], we apply weak-coupling quantum-
thermodynamics definitions, despite the couplings’ being
strong. As a result, we obtain di↵erent work and heat
values, which behave qualitatively di↵erently.

Outlook.—This work shows how strong-coupling quan-
tum thermodynamics applies to lattice gauge theories in
and out of equilibrium. The work further shows how
entanglement Hamiltonians can be leveraged to mea-
sure certain thermodynamic quantities in quantum sim-
ulations. Our framework may be applied to explore
further questions in the quantum thermodynamics of
gauge theories. Examples include whether thermody-
namic quantities signal topological [67, 116–123] or dy-
namical [124] phase transitions. While quench protocols
in LGTs have been implemented in experiments [72, 82–
84, 86, 105, 125–135], a longer-term vision is simulat-
ing particle collisions relevant to nuclear and high-energy
physics [136–141]. Hence one opportunity is to define the
heat and work exchanged in more-general processes, in-
cluding quantum-adiabatic ones. Also, non-Abelian and
higher-dimensional gauge theories merit studying within
our framework. Developing quantum-simulation proto-
cols for studying gauge-theory thermodynamics is an ac-
tive frontier, and this work furthers this goal.
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Strong-coupling (H_S^*-based) results

FIG. 3. Thermodynamic quantities as functions of the final
chemical potential, µf, during the instantaneous quench from
µi = 0 with N = 6, NS = 4, t = �1/2, ✏ = 1/2, m =
1/2, µi = 0, and � = 10. (a) Dissipated work Wdiss (solid,
black) and chiral condensate ⌃ (dot-dashed, teal). (b) Work
W (solid, black) and change �FS in the system’s free energy
(dotted, black). (c) Normalized heat �Q (solid, black) and
change �S in the system’s entropy (dotted, black). We also
plot µc

f , the µf value where ⌃0 is maximized (dashed, gray).
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Thermodynamic quantities must be defined with care in strong-coupling 
quantum thermodynamics. 

We define work and heat in non-equilibrium quench processes in a way 
consistent with the first and second laws of thermodynamics. 

We apply this framework to gauge-theory thermodynamics and demonstrate 
the sensitivity of thermodynamic quantities to phase transitions. 

We show how these thermodynamic quantities can be extracted using 
entanglement-tomography tools in quantum simulations. 

Summary

Explore thermodynamic and continuum limits? 

Extension of the formalism to other non-equilibrium processes such as high-
energy collisions? 

Demonstration in a quantum-simulation experiment? Need equilibrium-state 
entanglement Hamiltonian tomography.

outlook


