

Scaling results for Charged sectors of near conformal QCD

Based on *Phys.Rev.D* **109 (2024) 12, in collaboration with J. Bersini, C. Gambardella and F. Sannino**

41st Lattice Conference, University of Liverpool, UK, July 28–Aug. 3, 2024

Alessandra D'Alise

Dipartimento di Fisica "Ettore Pancini" Università degli studi di Napoli "Federico II"

- **1. [Basic blocks](#page-5-0)**
- **2. [Executive Summary](#page-9-0)**
- **3. [The effective Lagrangian](#page-16-0)**
- **4. [Motivations & Methodologies](#page-19-0)**
- **5. [Results](#page-38-0)**
- **6. [Back up slides](#page-61-0)**

Goal of this talk

Goal of this talk

progress in understanding the QCD phase diagram

Goal of this talk

Talks of other members of the group

- *P. Butti on Tuesday:* $B \to D^{(*)}$ decays from $N_f = 2 + 1 + 1$ highly improved staggered quarks and clover *b*-quark in the Fermilab interpretation.
- *• A. Rago on Tuesday*: openQCD on GPU
- *• S. Martins on Tuesday*: Progress on the GPU porting of HiRep

[Basic blocks](#page-5-0)

Introduction

Unveiling near conformal properties of QCD

Introduction

IR dynamics of *SU*(*N*) theories depends on both the matter content and on the strength of the coupling constant

approaching from below the conformal window: near conformal regime

approaching from below the conformal window: near conformal regime

approaching from below the conformal window: near conformal regime

approaching from below the conformal window: near conformal regime

We consider the dynamics near the lower edge of the conformal window on a non-trivial background to determine scaling dimensions of QCD operators carrying isospin charge:

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{1}
$$

We consider the dynamics near the lower edge of the conformal window on a non-trivial background to determine scaling dimensions of QCD operators carrying isospin charge:

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{1}
$$

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu}\right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 + \mathcal{O}\left(m_\sigma^4, m_\pi^8, m_\sigma^2 m_\pi^4\right) \tag{2}
$$

J. L. Cardy, *Conformal invariance and universality in finite-size scaling*, S. Hellerman at al., *On the CFT operator spectrum at large global charge*

[The effective Lagrangian](#page-16-0)

Chiral Lagrangian at finite isospin and *θ***-angle**

The low-energy dynamics of the theory is described by the chiral Lagrangian below

 $\mathcal{L} = \nu^2 Tr \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} + m_\pi^2 \nu^2 Tr \{ M \Sigma + M^\dagger \Sigma^\dagger \}$ *}* Goldstones' dynamics

 $+2i\mu\nu^2Tr\{I\partial_0\Sigma\Sigma^\dagger-I\Sigma^\dagger\partial_0\Sigma\}+2\mu^2\nu^2Tr\{II-\Sigma^\dagger I\Sigma I\}$ isospin contribution

$$
-a\nu^2\left(\theta - \frac{i}{2}Tr\{\log \Sigma - \log \Sigma^\dagger\}\right)^2
$$

topological term: *θ* -angle

14

STANDARD

Chiral Lagrangian at finite isospin and *θ***-angle**

The low-energy dynamics of the theory is described by the chiral Lagrangian below

 $\mathcal{L} = \nu^2 Tr \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} + m_\pi^2 \nu^2 Tr \{ M \Sigma + M^\dagger \Sigma^\dagger \}$ *}* Goldstones' dynamics

 $+2i\mu\nu^2Tr\{I\partial_0\Sigma\Sigma^\dagger - I\Sigma^\dagger\partial_0\Sigma\} + 2\mu^2\nu^2Tr\{II - \Sigma^\dagger\}$ *I*Σ*I}* isospin contribution

14

$$
-a\nu^2 \left(\theta - \frac{i}{2} Tr{\log \Sigma} - \log \Sigma^{\dagger}\right)^2 \mid \text{ topological term: } \theta \text{ -angle}
$$

Here ν is half the pion decay constant, μ is the (generalized) isospin chemical potential, *m^π* is the mass of the Goldstones and

$$
\Sigma = e^{i\varphi/\nu}, \quad \varphi = \Pi^a T^a + \frac{S}{\sqrt{N_f}}, \quad M = \mathbb{1}_{N_f}, \quad I = \frac{1}{2} \begin{pmatrix} \mathbb{1}_{N_f/2} & 0 \\ 0 & -\mathbb{1}_{N_f/2} \end{pmatrix}
$$
(3)

D. T. Son et al., *QCD at finite isospin density*, E. Witten, *Large N chiral dynamics*

[Motivations & Methodologies](#page-19-0)

Motivations: When & How

15

When

ক

Motivations: When & How

ক

2 3 4 5 6 7 8 9 10 $\frac{6}{N}$ 4է— 6 8 10 $N_{f_{12}}$ 14 16 18 20 conformal window for the \bar{N} rep. approaching the conformal window from below for the \bar{N} rep.

How

Motivations: When & How

When

How

near − conformality : introduction of a potential $V(\sigma)$ as a source of explicit breaking of conformality

D. D. Dietrich et al., *Conformal window of SU(N) gauge theories with fermions in higher dimensional representations*, M. Golterman et al., *Low-energy effective action for pions and a dilatonic meson*, T. Appelquist et al., *Dilaton effective field theory*

We want to unveil near conformal properties of the theory on flat spacetime

WHAT?

16

ground state energy on the cylinder \implies scaling dimensions of operators carrying charge *Q* on flat spacetime

The near-conformal Lagrangian: the dilaton

2

$$
\tilde{\mathcal{L}} = \nu^2 Tr \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} e^{-2\sigma f} + m_\pi^2 \nu^2 Tr \{ M \Sigma + M^\dagger \Sigma^\dagger \} e^{-y\sigma f}
$$
 Goldstone's dynamics
\n
$$
+ 2\mu^2 \nu^2 Tr \{ II - \Sigma^\dagger I \Sigma I \} e^{-2\sigma f} + 2i\mu \nu^2 Tr \{ I \partial_0 \Sigma \Sigma^\dagger - I \Sigma^\dagger \partial_0 \Sigma \} e^{-2\sigma f}
$$
 isospin
\n
$$
- a\nu^2 \left(\theta - \frac{i}{2} Tr \{ \log \Sigma - \log \Sigma^\dagger \} \right)^2 e^{-4\sigma f}
$$
 topological contribution
\n
$$
+ \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma - \frac{R}{\epsilon f^2} \right) e^{-2\sigma f} - \Lambda_0^4 e^{-4\sigma f}
$$
 dilaton's dynamics & geometric terms

 $6f^2$ $\int e^{-2\sigma f}$ − Λ_0^4 $e^{-4\sigma f}$ dilaton's dynamics & geometric terms

The near-conformal Lagrangian: the dilaton

$$
\tilde{\mathcal{L}} = \nu^2 Tr \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} e^{-2\sigma f} + m_\pi^2 \nu^2 Tr \{ M \Sigma + M^\dagger \Sigma^\dagger \} e^{-y\sigma f}
$$
 Goldstone's dynamics
\n
$$
+ 2\mu^2 \nu^2 Tr \{ II - \Sigma^\dagger I \Sigma I \} e^{-2\sigma f} + 2i\mu \nu^2 Tr \{ I \partial_0 \Sigma \Sigma^\dagger - I \Sigma^\dagger \partial_0 \Sigma \} e^{-2\sigma f}
$$
 isospin
\n
$$
- a\nu^2 \left(\theta - \frac{i}{2} Tr \{ \log \Sigma - \log \Sigma^\dagger \} \right)^2 e^{-4\sigma f}
$$
 topological contribution
\n
$$
+ \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma - \frac{R}{6f^2} \right) e^{-2\sigma f} - \Lambda_0^4 e^{-4\sigma f}
$$
 dilaton's dynamics & geometric terms

The Lagrangian that we use is

$$
\mathcal{L}_{\sigma} = \tilde{\mathcal{L}} - V(\sigma) \tag{4}
$$

17

A. Salam et al., *Nonlinear realizations. II. Conformal symmetry*, M. Golterman et al., *Low-energy effective action for pions and a dilatonic meson*, T. Appelquist et al., *Dilaton effective field theory*

the classical ground state energy

$$
E_Q = \mu Q - \mathcal{L}_\sigma \tag{5}
$$

18

is computed by solving the EOMs

$$
\frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial \varphi} = \frac{\partial \mathcal{L}}{\partial \sigma_0} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mu} = \frac{Q}{V},\tag{6}
$$

where the last equation defines the isospin charge density

the classical ground state energy

$$
E_Q = \mu Q - \mathcal{L}_\sigma \tag{5}
$$

18

is computed by solving the EOMs

$$
\frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial \varphi} = \frac{\partial \mathcal{L}}{\partial \sigma_0} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mu} = \frac{Q}{V},\tag{6}
$$

where the last equation defines the isospin charge density we solve the EOMs perturbatively in positive powers of the parameters m_σ^2 and m_π^2

 \overline{D}

$\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms}$ (7)

 $\sqrt{2}$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{7}
$$

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{8}
$$

• conformal dimension

 $\sqrt{2}$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{7}
$$

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_{\sigma}}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_{\pi}}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2
$$
 (8)
• conformal dimension
• near conformal contribution due to the *mass of the dilaton*

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{7}
$$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{7}
$$

the non-conformal corrections depend on the parameters encoding the explicit breaking of scale invariance

 $\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms}$ (9)

20

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms}
$$
\n(9)

20

$$
\Delta_Q^* = c_{4/3} Q^{4/3} + c_{2/3} Q^{2/3} + (Q^0)
$$
\n(10)

is the scaling dimension in the conformal limit at the leading order in the large

charge expansion

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms}
$$
\n(9)

20

$$
\Delta_Q^* = c_{4/3} Q^{4/3} + c_{2/3} Q^{2/3} + (Q^0)
$$
\n(10)

is the scaling dimension in the conformal limit at the leading order in the large

charge expansion

$$
c_{4/3} = \frac{3}{8} \left(\frac{2\Lambda^2}{\pi N_f \nu^2} \right)^{2/3}, \quad c_{2/3} = \frac{1}{4f^2} \left(\frac{2\pi^2}{N_f \nu^2 \Lambda^4} \right)^{1/3}
$$
(11)

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{ near CFT terms} \tag{12}
$$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{ near CFT terms} \tag{12}
$$

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{13}
$$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{12}
$$

$$
\triangle_Q = \triangle_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{13}
$$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{12}
$$

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{13}
$$

$$
B_1 = \frac{c_{2/3} 2^{9-2\Delta} 3^{\frac{\Delta}{2}-1} (\pi \nu r)^{4-\Delta} (c_{4/3} N_f)^{1-\frac{\Delta}{2}}}{(\Delta - 4)\Delta} \left(1 - \frac{\Delta c_{2/3}}{4c_{4/3}} Q^{-2/3} + (Q^{-4/3})\right)
$$

\n
$$
B_2 = -3^{4-\gamma} 2^{4\gamma - 3} \pi^{2\gamma + 2} c_{4/3}^{\gamma - 4} N_f^{\gamma - 1} (\nu r)^{2(\gamma + 1)} \left(1 + \frac{(\gamma - 4)c_{2/3}}{2c_{4/3}} Q^{-2/3} + (Q^{-4/3})\right)
$$

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{12}
$$

$$
\triangle_Q = \triangle_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{13}
$$

$$
B_1 = \frac{c_{2/3} 2^{9-2\Delta} 3^{\frac{\Delta}{2}-1} (\pi \nu r)^{4-\Delta} (c_{4/3} N_f)^{1-\frac{\Delta}{2}}}{(\Delta - 4)\Delta} \left(1 - \frac{\Delta c_{2/3}}{4c_{4/3}} Q^{-2/3} + (Q^{-4/3})\right)
$$

\n
$$
B_2 = -3^{4-\gamma} 2^{4\gamma-3} \pi^{2\gamma+2} c_{4/3}^{\gamma-4} N_f^{\gamma-1} (\nu r)^{2(\gamma+1)} \left(1 + \frac{(\gamma - 4)c_{2/3}}{2c_{4/3}} Q^{-2/3} + (Q^{-4/3})\right)
$$

\ngeometry

$$
\Delta_Q \equiv r E_Q = \Delta_Q^* + \text{near CFT terms} \tag{12}
$$

$$
\triangle_Q = \triangle_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi}{4\pi\nu}\right)^4 \cos^2(\alpha(\theta)) Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{13}
$$

$$
B_1 = \frac{c_{2/3} 2^{9-2\Delta} 3^{\frac{\Delta}{2}-1} (\pi \nu r)^{4-\Delta} (c_{4/3} N_f)^{1-\frac{\Delta}{2}}}{(\Delta - 4)\Delta} \left[\left(1 - \frac{\Delta c_{2/3}}{4c_{4/3}} Q^{-2/3} + \left(Q^{-4/3} \right) \right) \right]
$$

$$
B_2 = \left[-3^{4-\gamma} 2^{4\gamma-3} \pi^{2\gamma+2} c_{4/3}^{\gamma-4} N_f^{\gamma-1} (\nu r)^{2(\gamma+1)} \right] \left(1 + \frac{(\gamma-4)c_{2/3}}{2c_{4/3}} Q^{-2/3} + \left(Q^{-4/3} \right) \right)
$$

geometry charge expansion

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu}\right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{14}
$$

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left[\left(\frac{m_\sigma}{4\pi\nu} \right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu} \right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 \right]
$$
(14)

22

 \bullet the near-conformal corrections are proportional to $\boxed{m_\sigma^2}$ and $\boxed{m_\pi^4}$

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left[\left(\frac{m_\sigma}{4\pi\nu} \right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu} \right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 \right]
$$
(14)

 \bullet the near-conformal corrections are proportional to $\boxed{m_\sigma^2}$ and $\boxed{m_\pi^4}$

novel way to compute the dilaton mass

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left(\frac{m_\sigma}{4\pi\nu}\right)^2 Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu}\right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{14}
$$

22

 \bullet the near-conformal corrections are proportional to $\boxed{m_\sigma^2}$ and $\boxed{m_\pi^4}$

novel way to compute the dilaton mass

• the large charge framework allows us to perform analytical calculations

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left[\left(\frac{m_\sigma}{4\pi\nu} \right)^2 \right] Q^{\frac{\Delta}{3}} B_1 + \left(\frac{m_\pi(\theta)}{4\pi\nu} \right)^4 Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{14}
$$

22

 \bullet the near-conformal corrections are proportional to $\boxed{m_\sigma^2}$ and $\boxed{m_\pi^4}$

novel way to compute the dilaton mass

• the large charge framework allows us to perform analytical calculations

scaling dimensions of QCD operators carrying isospin charge at the lower boundary of the QCD conformal window

$$
\Delta_Q = \Delta_Q^* + \left[\left(\frac{m_\sigma}{4\pi\nu} \right)^2 \right] Q^{\frac{\Delta}{3}} B_1 + \left[\left(\frac{m_\pi(\theta)}{4\pi\nu} \right)^4 \right] Q^{\frac{2}{3}(1-\gamma)} B_2 \tag{14}
$$

22

 \bullet the near-conformal corrections are proportional to $\boxed{m_\sigma^2}$ and $\boxed{m_\pi^4}$

novel way to compute the dilaton mass

• the large charge framework allows us to perform analytical calculations

Q works as a new tunable parameter

Thank you!

Some related talks:

- *• R. Zwicky on Tuesday*: Dilaton effective theory and soft theorems
- *• J. Ingoldby on Friday*: Dilaton Forbidden Dark Matter

[Back up slides](#page-61-0)

SU(2) : **walking** smooth approach *β* $α$ N_f N_f^{II} confinement and *χ*SB loss of asymptotic freedom \sum_{f} Ⅲ $N_{\rm f}^{\rm III}$ $N_{\rm f}^{\rm II}$ $N_f^{\rm I}$ $N_f^{\rm I}$ 0 **conformal window**

Symmetries I: spontaneous breaking

We consider the dynamics near the lower edge of the conformal window

To smoothly approach the lower edge of the conformal window a new light scalar is included: *the dilaton*

The IR dynamics is studied within the dilaton effective field theory

T he f irst step is to upgrade the chiral Lagrangian to a conformally invariant theory via the introduction of a scalar degree of freedom *σ*, the *dilaton*, which under scale dilations $x \mapsto e^{\lambda}x$ transforms as

$$
\sigma \mapsto \sigma - \frac{\lambda}{f} \,. \tag{15}
$$

S. Coleman, *Aspects of Symmetry: Selected Erice Lectures*, C. Isham et al., *Spontaneous breakdown of conformal symmetry*, A. Salam et al., *Nonlinear realizations. II. Conformal symmetry*

Symmetries I: spontaneous breaking

Scale invariance can then be enforced at the effective action level by coupling *σ* to each operator \mathcal{O}_k of dimension k appearing in the Lagrangian as

$$
\mathcal{O}_k \mapsto e^{(k-4)\sigma f} \mathcal{O}_k \,. \tag{16}
$$

DILATON EFFECTIVE FIELD THEOrY

The resulting theory features non-linearly realized dilation invariance with *f* and *σ* being the length scale and the Goldstone boson associated with the spontaneous breaking of conformal symmetry, respectively.

S. Coleman, *Aspects of Symmetry: Selected Erice Lectures*, C. Isham et al., *Spontaneous breakdown of conformal symmetry*, A. Salam et al., *Nonlinear realizations. II. Conformal symmetry*

Symmetries II: explicit sources

Explicit breaking of the latter can be taken into account introducing a potential term for *σ*.

Consider perturbing a CFT with an operator $\mathcal O$ with conformal dimension Δ , i.e.

$$
\mathcal{L}_{CFT} \to \mathcal{L}_{CFT} + \lambda_{\mathcal{O}} \mathcal{O} \,, \tag{17}
$$

with $\lambda_{\mathcal{O}}$ the corresponding coupling. For $\lambda_{\mathcal{O}} \ll 1$ the perturbation generates the following dilaton potential

$$
V(\sigma) = \frac{m_{\sigma}^2 e^{-4f\sigma}}{4(4-\Delta)f^2} - \frac{m_{\sigma}^2 e^{-\Delta f\sigma}}{\Delta(4-\Delta)f^2} + \mathcal{O}(\lambda_{\mathcal{O}}^2).
$$
 (18)

W. D. Goldberger et al., *Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider*, T. Appelquist et al., *Dilaton effective field theory*

Methodology

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder.

 $Why?$ By virtue of the operator/state correspondence, a scalar operator with $U(1)$ charge *Q* corresponds to a state with homogeneous charge density in the theory compactified on the cylinder with radius *r*.

This state will have charge density $\rho \sim Q/r^{d-1}.$

 $When \mathcal{Q} \gg 1$ there exists a parametric separation between

In this window of energy the CFT state and its excitations will therefore correspond to some *condensed matter phase*: we consider it to be in a *superfluid phase*

Methodology

The derivative and loop expansion are controlled by powers of the ratio between the ${\sf IR}$ scale, $1/r$, and the UV scale $\rho^{1/(d-1)}$:

SEMICLASSIC METHODS: LArGE CHArGE EXPANSION

Inverse powers of the charge *Q* control the derivative and loop expansion of the theory on the cylinder. Order by order, the non-universal features associated with any specific CFT will be encapsulated by finitely many coefficients in the effective Lagrangian.

as for the pion Lagrangian: $m_{QCD} = 4\pi f_\pi$ is the UV scale while m_π is the IR and the physical observables are controlled by a systematic expansion in powers of*mπ*/*mQCD*

Large charge expansion: the leading order

We will consider our system on a manifold ${\cal M}$ with volume r^3 such that the underlying new scale of the theory is

> $\Lambda_Q = (Q/r^3)$ $1/3$ (20)

where *Q* is the fixed isospin charge. Concretely, we will take our manifold to be

$$
\mathcal{M} = \mathbb{R} \times S^{d-1} \tag{21}
$$

such that we can consider an approximate state-operator correspondence that implies

$$
\Delta_Q = rE_Q, \qquad E_Q = \mu Q - \mathcal{L} \tag{22}
$$

where ∆*^Q* is the scaling dimension of the lowest-lying operator with isospin charge Q and E_Q is the ground state energy on $\mathbb{R}\times S^{d-1}$ at fixed charge

Digression I: Large charge setup

In the conformal limit, $m_\pi=m_\sigma=0$, Δ_Q^* can then be computed via a semiclassical expansion in the double scaling limit

$$
\Lambda_0 f \to 0 \,, \quad Q \to \infty \,, \quad Q(\Lambda_0 f)^4 = \text{fixed} \,. \tag{23}
$$

Digression II: Large charge setup

This can be seen by considering the expectation value of the evolution operator *U* = $e^{−HT}$ in an arbitrary state $|Q\rangle$ with charge Q

$$
\langle U \rangle_Q \equiv \langle Q | e^{-HT} | Q \rangle \underset{T \to \infty}{\longrightarrow} \mathcal{N} e^{-E_Q T} = \mathcal{N} e^{-\frac{\Delta_Q^*}{r} T}, \tag{24}
$$

with *H* the Hamiltonian, *T* the time interval, and *N* an unimportant normalization factor. Then one can rescale the fields as $\Sigma \to \nu f \Sigma$ and $e^{-f\sigma} \to \sqrt{Q}e^{-f\sigma}$ to exhibit

 Q as a new counting parameter in the path integral expression for $\langle U \rangle_O$

A. Monin et al., *Semiclassics, goldstone bosons and CFT data*, G. Badel et al., *The epsilon expansion meets semiclassics*

Digression III: Large charge setup

The scaling dimension of the lowest-lying operator assumes the following form

$$
rE_Q = \Delta_Q = \sum_{j=-1} \frac{1}{Q^j} \Delta_j \left(Q(\Lambda_0 f)^4 \right) \,. \tag{25}
$$

The leading order ∆*−*¹ is given by the classical ground state energy on R *× S* 3 *r*

whereas the next-to-leading order Δ_0 is determined by the fluctuations around the classical trajectory.

A. Monin et al., *Semiclassics, goldstone bosons and CFT data*, G. Badel et al., *The epsilon expansion meets semiclassics*
Chiral Lagrangian at finite isospin and *θ***-angle**

The low-energy dynamics of the theory is described by the chiral Lagrangian below

 $\mathcal{L} = \nu^2 Tr \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} + m_\pi^2 \nu^2 Tr \{ M \Sigma + M^\dagger \Sigma^\dagger \}$ *}* Goldstones' dynamics

 $+2i\mu\nu^2Tr\{I\partial_0\Sigma\Sigma^\dagger-I\Sigma^\dagger\partial_0\Sigma\}+2\mu^2\nu^2Tr\{II-\Sigma^\dagger I\Sigma I\}$ isospin contribution

$$
-a\nu^2 \left(\theta - \frac{i}{2} Tr{\log \Sigma} - \log \Sigma^{\dagger}\right)^2 \quad 1
$$

topological term: *θ* -angle

vacuum ansatz Σ_0 :

$$
\Sigma_0 = \left[U(\alpha_i) \right] \Sigma_c, \text{ with } U(\alpha_i) = \text{diag}\{e^{-i\alpha_1}, \dots, e^{-i\alpha_{N_f}}\}.
$$
 (26)

$$
\Sigma_c = \boxed{1_{N_f}} \cos \varphi + i \left(\left(\begin{array}{cc} 0 & \frac{1}{N_f/2} \\ \frac{1}{N_f/2} & 0 \end{array} \right) \cos \eta + i \left(\begin{array}{cc} 0 & -\frac{1}{N_f/2} \\ \frac{1}{N_f/2} & 0 \end{array} \right) \sin \eta \right) \sin \varphi
$$

The near-conformal Lagrangian: the dilaton

- 1. the state-operator correspondence enables us to deduce the scaling dimension for the lowest-lying operator with (generalised) isospin charge *Q*
- 2. this is achieved by determining the energy associated with the vacuum structure inducing the superfluid phase transition

we therefore evaluate \mathcal{L}_{σ} on the vacuum ansatz [\(26](#page-72-0)), obtaining

$$
\mathcal{L}_{\sigma}[\Sigma_0, \sigma_0] = -e^{-4f\sigma_0}\Lambda_0^4 - V(\sigma_0) - \frac{R e^{-2f\sigma_0}}{12f^2} + 2m_{\pi}^2\nu^2 X \cos\varphi e^{-f\sigma_0 y} + N_f\mu^2\nu^2 e^{-2f\sigma_0} \sin^2\varphi - a\nu^2 e^{-4f\sigma_0} \bar{\theta}^2.
$$
\n(27)

where σ_0 denotes the classical dilaton solution and

$$
\bar{\theta} = \theta - \sum_{i}^{N_f} \alpha_i , \quad X = \sum_{i=1}^{N_f} \cos \alpha_i , \tag{28}
$$

EOMs

$$
\mathcal{L}_{\sigma} [\Sigma_0, \sigma_0] = -e^{-4f\sigma_0} \Lambda_0^4 - V(\sigma_0) - \frac{R e^{-2f\sigma_0}}{12f^2} + 2m_{\pi}^2 \nu^2 X \cos \varphi e^{-f\sigma_0 y} + N_f \mu^2 \nu^2 e^{-2f\sigma_0} \sin^2 \varphi - a\nu^2 e^{-4f\sigma_0} \bar{\theta}^2
$$
\n(29)

The classical ground state energy is computed by solving the following EOMs

$$
\sin\varphi (N_f \mu^2 e^{-2f\sigma_0} \cos\varphi - m_\pi^2 X e^{-f\sigma_0 y}) = 0, \qquad (30)
$$

$$
ae^{-4f\sigma_0}\bar{\theta} - m_\pi^2 \sin \alpha_i \cos \varphi e^{-f\sigma_0 y} = 0, \qquad i = 1,..,N_f, \tag{31}
$$

$$
\frac{Re^{-2f\sigma_0}}{6f} + 4af\nu^2 e^{-4f\sigma_0} \bar{\theta}^2 + 4f\Lambda_0^4 e^{-4f\sigma_0} - \frac{\partial V(\sigma)}{\partial \sigma}\Big|_{\sigma = \sigma_0} +
$$

\n
$$
-2fN_f\mu^2 \nu^2 e^{-2f\sigma_0} \sin^2 \varphi - 2fym_\pi^2 \nu^2 X \cos \varphi e^{-f\sigma_0 y} = 0,
$$
\n(32)
\n
$$
2N_f\mu\nu^2 e^{-2f\sigma_0} \sin^2 \varphi = \frac{Q}{V},
$$

Solving the EOMs

$$
\frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial \varphi} = \frac{\partial \mathcal{L}}{\partial \sigma_0} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mu} = \frac{Q}{V},\tag{34}
$$

to determine the classical ground state energy on the cylinder we need to solve the above EOMs in the variables φ , α_i , σ_0 and μ and plug the solution into eq.[\(29](#page-73-0))

we expand the variables as $x=x_0+x_1m_{\sigma}^2+x_2m_{\pi}^2+x_3m_{\sigma}^4+x_4m_{\pi}^4+x_5m_{\sigma}^2m_{\pi}^2+\left(m_{\sigma}^6,m_{\pi}^6,m_{\sigma}^4m_{\pi}^2,m_{\sigma}^2m_{\pi}^4\right)$ where $x = \{\mu, \varphi, \sigma_0, \alpha_i\}$ and determine the coefficients of the expansion by solving the EOMs order by order

we redefines the cosmological constant as

$$
\Lambda^4 \equiv \Lambda_0^4 + \frac{m_\sigma^2}{4f^2(4-\Delta)} \, .
$$

The Phase diagram

The Lagrangian of the theory evaluated on the ground state ansatz reads

$$
\mathcal{L}[\Sigma_0] = 2m_\pi^2 \nu^2 X \cos \varphi + N_f \mu^2 \nu^2 \sin^2 \varphi - a\nu^2 \bar{\theta}^2. \tag{35}
$$

The angle φ and the Witten variables α_i are determined by the EOM as

$$
\sin \varphi \left(N_f \cos \varphi - \frac{m_\pi^2 X}{\mu^2} \right) = 0 , \qquad (36)
$$

$$
m_{\pi}^{2}\sin\alpha_{i}\cos\varphi = a\bar{\theta}, \quad i = 1, \ldots, N_{f}
$$
 (37)

The energy density of the system in the two phases reads

$$
E(\theta) = -2m_{\pi}^2 \nu^2 X + a\nu^2 \bar{\theta}^2
$$
normal phase $(\varphi = 0)$

$$
E(\theta) = -\frac{m_{\pi}^4 \nu^2}{N_f \mu^2} X^2 - N_f \nu^2 \mu^2 + a\nu^2 \bar{\theta}^2
$$
superfluid phase $\left(\cos \varphi = \frac{m_{\pi}^2 X}{N_f \mu^2}\right)$ (38)

Solutions I: Normal Phase

$$
\sin \varphi \left(N_f \cos \varphi - \frac{m_\pi^2 X}{\mu^2} \right) = 0 , \qquad (39)
$$

$$
m_{\pi}^{2}\sin\alpha_{i}\cos\varphi = a\bar{\theta}, \ \ i = 1,\ldots,N_{f}
$$
 (40)

we solve eq.[\(40](#page-76-0)) by expanding in powers of m_π^2/a that we take to be small. Specifically, at the leading order in m_π^2/a , we have

$$
\alpha_i = \begin{cases} \pi - \alpha(\theta), & i = 1, \dots, n \\ \alpha(\theta), & i = n+1, \dots, N_f, \end{cases}
$$
\n(41)

where

$$
\alpha(\theta) = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]
$$
 (42)

Normal Phase Ground State Energy

$$
\alpha(\theta) = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]
$$
 (43)

The parameters *n* and *k* label the various solutions to the EOMs. The interval of values for *k* is constrained because at fixed *n* the solutions are periodic in *k* of period *N^f −* 2*n*

the solution minimizing the energy has $n = 0$ and the following values of $\alpha(\theta)$

$$
\alpha(\theta) = \begin{cases} \frac{\theta}{N_f}, & \theta \in [0, \pi] \\ \frac{\theta - 2\pi}{N_f}, & \theta \in [\pi, 2\pi], \end{cases}
$$
 (44)

which correspond, respectively, to $k = 0$ and $k = N_f - 1$.

Solutions II: Superfluid Phase

The EOM becomes

$$
\frac{m_{\pi}^4}{N_f \mu^2} X \sin \alpha_i = a\overline{\theta}, \ \ i = 1, \dots, N_f \tag{45}
$$

we solve eq.[\(40](#page-76-0)) by expanding in powers of $m_\pi^2/(a\mu^2)$ that we take to be small. Specifically, at the leading order in $m_\pi^2/(a\mu^2)$, we have

$$
\alpha_i = \begin{cases} \pi - \alpha(\theta), & i = 1, \dots, n \\ \alpha(\theta), & i = n+1, \dots, N_f, \end{cases}
$$
 (46)

where

$$
\alpha(\theta) = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]
$$
 (47)

Superfluid Phase Ground State Energy

$$
\alpha(\theta) = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]
$$
 (48)

The parameters *n* and *k* label the various solutions to the EOMs. The interval of values for *k* is constrained because at fixed *n* the solutions are periodic in *k* of period *N^f −* 2*n*

the solution minimizing the energy has $n = 0$ and the following values of $\alpha(\theta)$

$$
\alpha(\theta) = \begin{cases} \frac{\theta}{N_f}, & \theta \in [0, \pi] \\ \frac{\theta - 2\pi}{N_f}, & \theta \in [\pi, 2\pi], \end{cases}
$$
\n(49)

which correspond, respectively, to $k = 0$ and $k = N_f - 1$.

Spectrum

Fixing the generalized isospin charge results in

$$
SU(N_f)_L \times SU(N_f)_R \times U(1)_V \stackrel{N_f^2 - 1}{\leadsto} SU(N_f)_V \times U(1)_V \longrightarrow SU\left(\frac{N_f}{2}\right)_u \times SU\left(\frac{N_f}{2}\right)_d \times U(1)_I \times U(1)_V
$$

$$
\stackrel{\frac{N_f^2}{4}}{\leadsto} SU\left(\frac{N_f}{2}\right)_{ud} \times U(1)_V,
$$
(50)

No dilaton: the spectrum of light modes is composed of $N_f^2/4$ massless Goldstone bosons with speed $v_G = 1$ that parameterize the coset $G/H = \frac{SU(N_f/2)_u \times SU(N_f/2)_d \times U(1)_I \times U(1)_V}{SU(N_f/2)_u \times SU(N_f/2)_I}$ $SU(N_f/2)_{ud} \times U(1)_V$.

These modes arrange themselves in: adjoint representation plus a singlet (associated with the spontaneous breaking of $U(1)_I$) In addition, a pseudo-Goldstone mode stems from the would-be spontaneous breaking of $U(1)_A$ which we call the S (singlet) mode.