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Introduction

I Scattering amplitudes are inherently Minkowskian observables. Only Euclidean
correlators are calculable in lattice QCD. Analytic continuation is needed to real
time. Numerically ill-posed problem.

I Scattering amplitudes can be extracted from energy levels in large but finite
volume. Energy levels can be calculated from Eucliden correlators. More theory
needs to be developed every time a new multi-particle threshold is opened.
M. Luscher, Commun. Math. Phys. 105 (1986), 153-188

M. Luscher, Nucl. Phys. B 354 (1991), 531-578

C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243

M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003

[...]

I Approximate scattering amplitudes as a linear combination of Euclidean
correlators sampled at discrete times.
J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520

J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521

https://inspirehep.net/literature/231480
https://inspirehep.net/literature/300613
https://inspirehep.net/literature/687104
https://inspirehep.net/literature/1312380
https://inspirehep.net/literature/302471
https://inspirehep.net/literature/1727182


An analogy: spectral densities

M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D 99, no.9, 094508 (2019)

William Jay, Lattice24 talk, Mon 17:30 (see also references therein)

Matteo Saccardi, Lattice24 talk, Wed 11:55
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Davier-Hoecker-Malaescu-Zhang, 2019

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, EurPhysJ. C80, no.3, 241 (2020).
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Can we do anything similar for scattering amplitudes?



Scattering amplitudes2
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⌅ Euclidean correlator:
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h̃(�) auxiliary function: smooth, compact support, h̃(0)= 1.
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assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula
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What I am not telling you:

I What does the smearing kernel look like?

I What norm do we need to choose?

See paper or backup slides.
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I Smaller ✏ ) better approximation of Haag-Ruelle kernel ) larger values of n )
larger statistical noise.

I Smaller � ) Haag-Ruelle kernel more peaked ) harder to approximate ) larger
values of n ) larger statistical noise.

I Also recall: ⌥h(n⌧ ;p) increases exponentially with n.
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I A finite-volume estimator is obtained trivially by replacing

Z
d
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(2⇡)3
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1
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X
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.

If coe�cients wn,b are kept fixed as the volume is varied, then the L!+1 limit
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

I The continuum limit of the estimator can be understood in terms of Symanzik
e↵ective theory.

I In this approach, the L!1 and a! 0 limits must be taken before the ✏! 0 and
�! 0 limits. In particular ⌧ cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

I We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

I This formula provides the blueprints for a potentially viable numerical strategy.

I Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

I Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

I Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.

I The class of operators used to approximate asymptotic states can be generalized
by relaxing the constraint that f̃ t(p) must have compact support. This may make
the numerics easier.



Backup slides

Talk given at CERN workshop, July 2024



Introduction

I How do we calculate hadron scattering amplitude from Quantum
Chromodynamics? In principle...
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I Numerical lattice QCD is the only known tool which allows the calculation of
observables in QCD at the nonperturbative level.

I Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is
needed to real time. Numerically ill-posed problem.

I Find another way...
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Theoretical background

Haag-Ruelle scattering theory
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Haag-Ruelle scattering theory

| out(t)i=
Y

A

Z
d4pA
(2⇡)4

f̃ tA(pA)�̃(pA)
† |⌦i

t!+1
=

Y

A

Z
d3pA

(2⇡)3
f̌A(pA)a

†
out(pA) |⌦i+O(|t|�1)

I f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I Error is O(|t|�1) for non-overlapping velocities, otherwise O(|t|�1/2).

I a†out(p) are standard creation operators:

[aout(p),a†out(p
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Approximation formula for scattering amplitudes

Rough sketch of derivation
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I Can we achieve the same e↵ect in a di↵erent way? Some mathematical trickery...
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Introduce two auxiliary functions:

I �(t) Schwartz with unit integral and closed support in (0,+1);

I h(t) Schwartz with unit integral.
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Scattering amplitude (2)
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⌅ �̃ regularizes the wildly-oscillating phase factor and selects the desired time-
ordering. It must be complex!

⌅ h̃(�) can be chosen with compact and arbitrarily narrow support around �=0.
It cuts away contributions characterized by non-zero violations of the asymp-
totic energy conservation.

⌅ Wightman function in momentum space ' spectral density.
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Wightman function ' spectral density

h⌦|�̃(pM+1) �̃(pM+2) ··· �̃(pM+N) �̃(pM)† ··· �̃(p2)
† �̃(p1)

†|⌦i

E1 = p01

E2 = p01 +p02

EM�1 = p01 + ···+p0M�1

EM = p01 + ···+p0M

EM+1 = p0M+1

EM+2 = p0M+1+p0M+2

= 2⇡�(EM+N�EM)

⇥ h⌦|�̂(pM+1)2⇡�(H�EM+1)···�̂(pM+N)2⇡�(H�EM)�̂(pM)···2⇡�(H�E1)�̂(p1)|⌦i

definitions: �̂(p)=
Z

d3x e�ipx�(0,x)

!A = EA� [EA]on-shell

= 2⇡�(EM+N�EM)⇢(!,p)
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Haag-Ruelle kernel K�(!,�) smears the spectral density in the energy variable !. The
parameter � plays the role of the smearing radius.

K�(!,�)= �̃

✓
2!M ��

2�

◆
⇣1 (!1)

"
M�1Y

A=2

⇣A(!A�!A�1)

#
⇣M (!M�!M�1)

⇥⇣⇤M+1(!M+1)

"
M+N�1Y

A=M+2

⇣⇤A (!A�!A�1)

#
⇣⇤M+N (!M�!M+N�1��)

Violation of asymptotic energy conservation: �(p)=
X

A

⌘AE(pA).
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Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in
the variables e�⌧! and �:

K�(!,�) �! P�,✏(e
�⌧! ,�)=

X

n1,n2···�1

X

b�0
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�
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��K�(!,�)�P�,✏(e
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��
???

< ✏

Integrating P�,✏(e
�⌧! ,�) against the spectral density yields the Euclidean correlator!
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⌅ Euclidean correlator:

Ĉc (s;p)= h⌦|�̂(pM+1)e
�sM+NH ···�̂(pM+N)e

�sMH �̂(pM)† ···e�s1H �̂(p1)
†|⌦ic

⌅ Kinematic function:

⌥h(s;p)= h̃(�(p))exp

8
<

:
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A=1

sA

AX

B=1

E(pB)+
M+N�1X

A=M+1

sA

AX

B=M+1

E(pB)

9
=

;



Which norm?

X

k↵k1=N!
0bNp

�̄b
Z

K

"
M+N�1Y

A=1

d!A

2⇡

#
d�e⌧

P
A!A

���D↵
!@b

�

⇥
K�(!,�)�P�,✏(e

�⌧! ,�)
⇤���

2
< ✏2

I One can choose some linear combinations of weighted L2 norm for various
derivatives.

I The integration domain K is completely determined by kinematics.

I The number of derivatives that one needs to control (N! , Np) depend on how
singular the spectral density is.

I The l.h.s. is a quadratic function of the polynomial coe�cients w�,✏
n,b . Minimizing

the l.h.s. can be done by solving a system of linear equations.

I Some speculative argument suggests N! =M+N and Np =0. We need to
understand this better...



Summary
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approx(�,✏)=
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d3pA

(2⇡)3
f̌ (⇤)A (pA)

�
[�(p)]b⌥h(n⌧ ;p)Ĉc (n⌧ ;p)

Theorem. For every r > 0, two constants A,Br (independent of ✏ and �) exist such
that ������

�approx(�,✏)

������
< A✏+Br�

r

assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula for scattering amplitudes

How can we use it?
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I Smaller ✏ ) better approximation of Haag-Ruelle kernel ) larger values of n )
larger statistical noise.

I Smaller � ) Haag-Ruelle kernel more peaked ) harder to approximate ) larger
values of n ) larger statistical noise.

I Also recall: ⌥h(n⌧ ;p) increases exponentially with n.

I Optimization problem: smaller ✏ and � means larger statistical errors, larger ✏ and
� means larger systematic error. One could design a strategy based on HLT to
minimize total error:

A[w ] =
��K�(!,�)�P�,✏(e

�⌧! ,�)
��2
???

B[w ] =
X

n,b,n0,b0
w�,✏
n,b hhCn,bCn0,b0 iicw

�,✏
n0,b0
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I A finite-volume estimator is obtained trivially by replacing

Z
d3pA

(2⇡)3
with

1

L3

X

pA

.

If coe�cients wn,b are kept fixed as the volume is varied, then the L!+1 limit
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

I The continuum limit of the estimator can be understood in terms of Symanzik
e↵ective theory.

I In this approach, the L!1 and a! 0 limits must be taken before the ✏! 0 and
�! 0 limits. In particular ⌧ cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

I We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

I This formula provides the blueprints for a potentially viable numerical strategy.

I Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

I Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

I Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.

I The class of operators used to approximate asymptotic states can be generalized
by relaxing the constraint that f̃ t(p) must have compact support. This may make
the numerics easier.


