The perturbative computation of the gradient flow coupling for the twisted Eguchi-Kawai model with the numerical stochastic perturbation theory

Speaker : Hironori Takei (Hiroshima University)

In collaboration with Ken-Ichi Ishikawa (Hiroshima University) Masanori Okawa (Hiroshima University)

HIROSHIMA UNIVERSITY

Graduate School of Advanced Science and Engineering Hiroshima University

Outline

1. Motivation

2. Strategy

- Twisted Eguchi—Kawai model
- The gradient flow with NSPT

3. Result

- The flow time dependence
- The large-N factorization

4. Conclusion

1. Motivation

- To compare experimental results written in the $\overline{\rm MS}$ scheme with the lattice results we need the relation between the $\overline{\rm MS}$ and a regularization independent schemes.
- The gradient flow coupling independent on regularization.
 R.Narayanan, H.Neuberger, JHEP03(2006)064, M. Lüscher, JHEP08(2010)071

 \rightarrow Important tool to connect lattice and continuum theory

The gradient flow in Yang—Mills theory

The flow equation in the continuum

t : flow time (= energy scale)

 $G_{\mu\nu}(x,t)$: Field strength $B_{\mu}(x,t)$

$$\frac{\partial}{\partial t}B_{\mu}(x,t) = -\frac{\delta S}{\delta B_{\mu}} \left(= D_{\nu}G_{\nu\mu}(x,t) \right), \qquad B_{\mu}(x,0) = A_{\mu}(x)$$

- The composite operator does not diverge at positive flow time.
 - M. Lüscher, P.Weisz, JHEP02(2011)051.
- The operator composed with the flowed gauge field does not require further renormalization and independent on regularization.
- We employ the gradient flow coupling for the renormalized coupling

$$\lambda_{\rho}(\mu) = \mathcal{N}^{-1}(t) \left\langle \frac{t^2 E(t)}{N} \right\rangle$$

Flow time t and the energy density μ $\mu^2 t = \rho$ Normalization factor : $\mathcal{N}(t)$

 \blacktriangleright To convert the lattice results to the results renormalized with the $\overline{\rm MS}$

scheme we need the relation $\lambda_{\rho}(\mu) \leftrightarrow \lambda_{S}(\mu)$.

1. Motivation

The GF coupling

$$\lambda_{\rho}(\mu) = \mathcal{N}^{-1}(t) \left\langle \frac{t^2 E(t)}{N} \right\rangle$$

Flow time *t* and the energy density μ $\mu^2 t = \rho$

Normalization factor : $\mathcal{N}(t)$

• The analytic relation between the GF coupling and the MS scheme coupling for the SU(N) Yang—Mills theory in the large-N limit at two-loop level.

GF coupling : $\lambda_{\rho}(\mu) \leftrightarrow \overline{\text{MS}}$ coupling : $\lambda_{S}(\mu)$

R. V. Harlander and T. Neumann, JHEP, vol. 2016, June 2016. J. Artz, et. al., JHEP, vol. 2019, June 2019.

• Coefficients
$$e_1, e_2$$

 $L(z) = \ln(2z) + \gamma_E$
 $e_1 = \frac{1}{2}b_0L(\rho) + e_{1,0}$, $e_{1,0} = \frac{1}{16\pi^2} \left(\frac{52}{9} + \frac{22}{3}\ln 2 - 3\ln 3\right)$
 $e_2 = e_{2,0} + \frac{1}{2} \left(2b_0e_{1,0} + b_1\right)L(\rho) + \left(\frac{1}{2}b_0L(\rho)\right)^2$, $e_{2,0} = \frac{1}{(16\pi)^2}27.978$
• Beta function b_0, b_1
 $b_0 = \frac{1}{16\pi^2}\frac{2 \cdot 11}{3}$
 $b_1 = \frac{1}{(16\pi^2)^2}\frac{2 \cdot 34}{3}$

• We would like to extract the relation $\lambda_{\rho}(\mu) \leftrightarrow \lambda_{S}(\mu)$ at more order for

the large-N Yang—Mills theory using the lattice perturbation theory.

2. Strategy

- We employ the numerical stochastic perturbation theory(NSPT).
 - ► The first study of GF-NSPT is in [Dalla Brida, M., Lüscher, M. Eur. Phys. J. C 77, 308 (2017)] (for SU(3) YM
- The GF-NSPT can evaluate the GF coupling with λ_0 at finite-N

 $\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t}, N)\lambda_0^2 + r_2(\hat{t}, N)\lambda_0^3 + r_3(\hat{t}, N)\lambda_0^4 \qquad \hat{t}: \text{dimensionless flow time}$

with SF B.C.).

- \rightarrow By taking the large-*N* limit we obtain $\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t})\lambda_0^2 + r_2(\hat{t})\lambda_0^3 + r_3(\hat{t})\lambda_0^4$
- Combining the Lüscher—Weisz formula ($\lambda_S(\mu) \leftrightarrow \lambda_0$) in the large-*N* with NSPT,

$$\lambda_{S}(\mu) = \lambda_{0} + c_{1}(\mu a)\lambda_{0}^{2} + c_{2}(\mu a)\lambda_{0}^{3} + \cdots \quad \text{with} \qquad \begin{aligned} c_{1}(\mu a) = \frac{1}{2}b_{0}\ln(\mu a) + k_{1} & , k_{1} = 0.1699559992 \\ c_{2}(\mu a) = c_{1}(\mu a)^{2} - b_{1}\ln(\mu a) + k_{3} & , k_{3} = 0.00791012 \end{aligned}$$

we obtain the relation $\lambda_{\rho}(\mu) \leftrightarrow \lambda_{S}(\mu)$,

2. Strategy ~ Twisted Eguchi—Kawai model ~

- Twisted Eguchi—Kawai (TEK) model : The matrix model on one-site lattice with twisted boundary condition.
 A. González-Arroyo, M. Okawa, Phys. Lett. B 120 (1983) 174.
- In the large-N limit the trace of the closed loop operator W[U]

 $\langle W[U] \rangle_{\text{TEK}}$ for TEK model $\xrightarrow{N \to \infty} \langle W[U] \rangle$ for SU(*N*) Yang—Mills theory

• TEK model is economical model to study the large-N SU(N) Yang-Mills theory.

Only *d* link variables : U_{μ} ($\mu = 1, \dots, d$)

- Partition function $Z_{\text{TEK}} = \int \prod_{\mu=1}^{4} dU_{\mu} e^{-S_{\text{TEK}}[U]} \qquad \text{Action} \qquad \text{Inverse 't Hooft coupling : } b = \frac{1}{Ng^2} = \frac{1}{\lambda}$ $S_{\text{TEK}}[U] = Nb \sum_{\mu,\nu=1}^{4} \text{Tr} \left[I - z_{\mu\nu}U_{\mu}U_{\nu}U_{\mu}^{\dagger}U_{\nu}^{\dagger} \right]$ • Effective volume : $V = (aL)^4 = (a\sqrt{N})^4 = a^4N^2$
- The space-time information is included in the twist eater Γ_{μ}

$$\Gamma_{\mu}\Gamma_{\nu} = z_{\nu\mu}\Gamma_{\nu}\Gamma_{\mu} \quad \text{ with the twist factor } : z_{\mu\nu} = \exp\left[\frac{2\pi ik}{\sqrt{N}}\epsilon_{\mu\nu}\right] \quad k: \text{ coprime with } \sqrt{N}$$

→ In the NSPT we perturbatively expand U_{μ} around the classical vacuum $U_{\mu}^{(0)} = \Gamma_{\mu}$

2. Strategy ~ The gradient flow with NSPT ~

NSPT : Numerical Stochastic Perturbation Theory

- NSPT numerically evaluates the perturbative coefficients for an observable without
 Feynman diagram => NSPT allows us to reach higher-order F. Di Renzo et al. Nucl. Phys. B 426.3(1994)
- It can be implemented by expanding the field and the action in terms of a coupling constant and integrating hierarchical stochastic differential equation.
 Langevin eq., Molecular dynamics (MD) eq.

We expanded the link variable as
$$U_{\mu} = \sum_{k=0}^{\infty} \lambda_0^{k/2} U_{\mu}^{(k)}$$
 (The vacuum : $U_{\mu}^{(0)}(\hat{t}) = \Gamma_{\mu}$)

- ► We use the HMD-based NSPT for TEK model in [A. González-Arroyo, et al. JHEP 127(2019)].
- The gradient flow with NSPT
 - Hierarchical GF equation $\frac{d}{d\hat{t}}V_{\mu}^{(k)}(x,\hat{t}) = -\frac{1}{2}\left(F_{\mu}[V] \star V_{\mu}(x,\hat{t})\right)^{(k)},$ • Force for TEK model $F_{\mu}^{(k)}[U] = \left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right) - \frac{1}{N}\operatorname{Tr}\left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right)$ • $F_{\mu}^{(k)}[U] = \left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right) - \frac{1}{N}\operatorname{Tr}\left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right)$ • $S_{\mu}^{(k)} = \left[U_{\mu} \star \sum_{\nu \neq \mu} \left(U_{\nu} \star U_{\mu}^{\dagger} \star U_{\nu}^{\dagger} - U_{\nu}^{\dagger} \star U_{\mu}^{\dagger} \star U_{\nu}\right)\right]^{(k)}$ • resymbol : convolutional product
 - We flow the perturbative configuration generated from NSPT.

$$\left\{ (U_{\mu,i}^{(0)}, \cdots, U_{\mu,i}^{(k)}, \cdots) | i = 1, \dots, N_{\text{sample}} \right\} \quad \stackrel{\text{Hierarchical flow}}{\longrightarrow} \quad \left\{ (V_{\mu,i}^{(0)}(\hat{t}), \cdots, V_{\mu,i}^{(k)}(\hat{t}), \cdots) | i = 1, \dots, N_{\text{sample}} \right\}$$

→We evaluate the coefficients of the GF coupling as the stochastic mean,

$$\left\langle O[V;\hat{t}] \right\rangle = \sum_{k=0}^{\infty} \lambda^k \left\langle O^{(k)}[V^{(0)}_{\mu}(\hat{t}), \cdots, V^{(k)}_{\mu}(\hat{t})] \right\rangle, \qquad \left\langle O^{(k)}[V^{(0)}_{\mu}, \cdots, V^{(k)}_{\mu}] \right\rangle \simeq \frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} O^{(k)}[V^{(0)}_{\mu,i}, \cdots, V^{(k)}_{\mu,i}]$$

2. Strategy

• The GF-NSPT can evaluate the GF coupling with λ_0 at finite-N

$$\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t}, N)\lambda_0^2 + r_2(\hat{t}, N)\lambda_0^3 + r_3(\hat{t}, N)\lambda_0^4 \qquad \hat{t} : \text{dimensionless flow time}$$

 \rightarrow By taking the large-*N* limit we obtain $\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t})\lambda_0^2 + r_2(\hat{t})\lambda_0^3 + r_3(\hat{t})\lambda_0^4$

• Combining the two relations (L.-W. formula and Harlander et al. result) we obtain the analytical coefficients for $\lambda_{\rho} \leftrightarrow \lambda_0$ at two-loop level in the continuum.

•
$$\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t})\lambda_0^2 + r_2(\hat{t})\lambda_0^3 + \cdots$$

with $r_1(\hat{t}) = b_0 \left(\ln \sqrt{2\hat{t}} + \gamma_E \right) + f_1$ $r_2(\hat{t}) = r_1(\hat{t})^2 + b_1 \left(\ln \sqrt{2\hat{t}} + \gamma_E \right) + f_2$
 $b_0 = \frac{1}{16\pi^2} \frac{2 \cdot 11}{3}$ and $f_1 = 0.21786205$ $b_1 = \frac{1}{(16\pi^2)^2} \frac{2 \cdot 34}{3}$ and $f_2 = 0.0067371$

From the flow time dependence (running behavior) of λ_ρ(μ) ↔ λ₀ we want to extract the beta function b_{0,1} and the constants f_{1,2} (= consistency check the ANA. and NSPT for λ_ρ(μ) ↔ λ_S(μ)).

3. Result ~ The parameters ~

- The parameter of the GF-NSPT simulation
 - ► k, SU(N) TEK model
 - We employ the three matrix sizes $N = 289, 441, 529 (L^2 = 17^2, 21^2, 23^2)$.
 - In order to take the smooth large-*N* limit we have to keep the phase $\theta = 2\pi |\bar{k}| / \sqrt{N}$.

($k\bar{k} = 1$, (mod \sqrt{N}))

Fix the phase parameter $\theta \simeq 0.40$.

HMD-based NSPT

- We use the HMD-based NSPT for TEK model in [A. González-Arroyo, et al. JHEP 127(2019)].

Integration for the GF eq.

- We use Lüscher's scheme with $\epsilon = 0.01$ as the numerical integration method.

The integration error is $\mathcal{O}(\epsilon^3)$.

- $\epsilon = 0.01$ is sufficiently small compared
- to the statistical error.

A. González-Arroyo, M. Okawa, JHEP 07(2010) 043.

L	N	k	$ ar{k} $	$\theta = \bar{k} /L$	au	$N_{\rm MD}$	Statics
17	289	5	7	0.41176	1.0	32	5931
21	441	13	8	0.38099	1.0	32	3790
23	529	7	10	0.43479	1.0	32	2600

The parameters for the NSPT and TEK model

3. Result ~ The flow time dependence ~

- The flow time dependence of the GF coupling
 - ► We extrapolate the finite-*N* (289,441,529) results to large-*N* (Red crosses).

 $\lambda_{\rho}(\mu) = \lambda_0 + r_1(\hat{t})\lambda_0^2 + r_2(\hat{t})\lambda_0^3$

- The analytical result (black dashed line) in the continuum.
- The deviation between the GF-NSPT and the continuum result
 - At large \hat{t} the effect of a finite volume becomes large : $\mathcal{O}(t/V)$
 - → We need N > 600 to suppress the correction under 10% at $\hat{t} = 7.0$! (From the tree-level analysis)
 - At small \hat{t} the effect of a lattice artifact becomes large : $\mathcal{O}(a^2/t)$

 \clubsuit We can control the lattice artifact at small \hat{t} .

⁴ Flow time *t* Flow time \hat{t} 3. Result ~ The flow time dependence ~

- The flow time dependence of the one-loop coefficient $r_1(\hat{t})$
 - ► Highly correlated data (Chi-square worse diverge) The full control of the off chi-square arXiv:1101.2248]

0 285

0.275

• We correlated fit the NSPT results with $f(\hat{t})$, g(

$$f(\hat{t}) = B_0 \left(\log(\sqrt{2\hat{t}}) + \frac{\gamma_E}{2} \right) + F_1 \quad , g(\hat{t}) = \frac{\hat{g}_{0.280}}{\hat{g}_{0.275}}$$

The one-loop result well reproduces the beta function, b₀ and the coefficient f₁. Flow time : t

(1) Fit in $\hat{t} \in [2.1, 6.3]$

- The small lattice artifact

2 Fit in $\hat{t} \in [0.9, 6.3]$ (include small \hat{t})

ANA. : $r(\hat{t}) = \beta_0 (\log \sqrt{2\hat{t}} + \gamma_E/2) + f_1$

- The large lattice artifact
- $\mathcal{O}(a^2/\hat{t})$ is sufficiently under control

J

0.28

0.26

- ANA. : $r(\hat{t}) = \beta_0 (\log \sqrt{2\hat{t}} + \gamma_E/2) + f$

Fit with f(x)Fit with q(x)

 $(\hat{t})_{0.27}^{0.27}$ 2

- Small error (compare with 1)

3. Result ~ The flow time dependence ~

- The flow time dependence of the two-loop coefficient $r_2(\hat{t})$
 - The analytical form of $r_2(\hat{t})$ is

$$r_2(\hat{t}) = r_1(\hat{t})^2 + b_1 \left(\ln \sqrt{2\hat{t}} + \frac{\gamma_E}{2} \right) + f_2$$

• We fit $r_2(\hat{t}) - r_1(\hat{t})^2$ with

$$f(\hat{t}) = B_1 \left(\log(\sqrt{2\hat{t}}) + \frac{\gamma_E}{2} \right) + F_2$$

- The order is consistent with the continuum one.
- The large error & poor fit result.
 - → Need more large N result and stochastic samples

The large-*N* factorization reduces the sample size at large-*N*.

• The large-*N* factorization is $\langle O_1 O_2 \rangle = \langle O_1 \rangle \langle O_2 \rangle + \mathcal{O}(N^{-2})$.

$$\operatorname{Var}(O) \equiv \langle O^2 \rangle - \langle O \rangle^2 \xrightarrow{N \to \infty} 0$$

• Is there large-N factorization of the coefficient at positive flow time \hat{t} ?

We check the variance of $r_i(\hat{t}) \rightarrow$

3. Result ~ The large-N factorization ~

• The variance of coefficients $Var(r_i(\hat{t}))$

► The tree-level is consistent with ANA..

$$\operatorname{Var}(E_W(\hat{t}))|_{\operatorname{tree}} = \frac{3}{2N^4} \sum_{q} e^{-4\hat{t}\hat{q}^2} \le \frac{3(N^2 - 1)}{2N^4} \xrightarrow{N \to \infty} 0$$

- We confirm the large-*N* factorization at positive flow time from tree-level analysis.
- The variance is reduced with *N*.

The large-*N* variance is small but does not becomes ZERO!

The finite volume effect grow with the flow time. $\mathcal{O}(t^2/N^4)$ become large

- → We can not see the zero variance at large-N from simple linear extrapolation with $1/N^2$.
- The estimation of sample size
 - We can estimate N_{sample} at large N from

$$N_{\text{sample}} \simeq \frac{\text{Var}(O(\hat{t}))}{\left\langle O(\hat{t}) \right\rangle^2} \left(\begin{array}{c} \left\langle O(\hat{t}) \right\rangle \\ \delta O(\hat{t}) \end{array} \right)^2 \text{ Relative error}$$

► N_{sample} with relative error 1% at $\hat{t} = 7.0$, N = 729.

one-loop : $N_{\text{sample}} \simeq 600$ We can compute two-loop : $N_{\text{sample}} \simeq 15200$ within a year.

The variance $Var(r_i(\hat{t}))$, (i = 0, 1, 2, 3) at $\hat{t} = 6.0$ v.s. volume $1/N^2$

 Coeff.
 $Var(r_i)|_{N \to \infty}$
 $r_0(\hat{t} = 6.0)$ $3.36(0.46) \times 10^{-3}$
 $r_1(\hat{t} = 6.0)$ $6.06(0.63) \times 10^{-3}$
 $r_2(\hat{t} = 6.0)$ $2.15(0.19) \times 10^{-2}$
 $r_3(\hat{t} = 6.0)$ $8.70(0.73) \times 10^{-2}$

The simple linear extrapolation of $Var(r_i(\hat{t}))$ at $\hat{t} = 6.0$, assuming $1/N^2$ dependence.

4. Conclusion

- We compute the coefficients of the GF coupling by using the NSPT for TEK model and analyze the running behavior (flow time dependence).
 - The one-loop result is consistent with continuum result.
 - The two-loop result has the consistency with ANA. but has the large statistical error.

We need more large matrix size *N* and statistical samples.

➡ Reduce the finite volume effect

- We confirm the large-*N* factorization at finite flow time at tree-level result.
- The large-*N* factorization exist at positive flow time.
- Our finite *N* results does not reproduce zero variance at large-*N* from simple linear extrapolation 1/*N*².
 - The reason is that the finite volume effect grows with \hat{t} . (Large $\mathcal{O}(t^2/N^4)$ term)

Future work

- We will compute the GF coupling with more large *N*.
- We want to relate GF coupling to an other renormalized coupling by using only NSPT calculation.

Thank you !

Backup : HMD based NSPT for TEK model

NSPT for TEK model

We generate the perturbative configuration with the HMD based NSPT

Dalla Brida, M., Lüscher, M. *Eur. Phys. J. C* 77, 308 (2017)

► We use the HMD-based NSPT for TEK model in [A. González-Arroyo, et al. JHEP 127(2019)].

The expanded link variable :
$$U_{\mu} = \sum_{k=0}^{\infty} \lambda^{k/2} U_{\mu}^{(k)}$$
 (The vacuum : $U_{\mu}^{(0)} = \Gamma_{\mu}$)

Hierarchy molecular dynamics equation for TEK model

$$\frac{dU_{\mu}^{(k)}}{d\tau} = i\left(P_{\mu} \star U_{\mu}\right)^{(k)} \qquad F_{\mu}^{(k)}[U] = \left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right) - \frac{1}{N} \operatorname{Tr}\left(S_{\mu}^{(k)} - S_{\mu}^{(k)\dagger}\right)$$

$$\frac{dP_{\mu}^{(k)}}{d\tau} = F_{\mu}^{(k)}[U] \qquad S_{\mu}^{(k)} = \left(U_{\mu} \star \sum_{\nu \neq \mu} \left(U_{\nu} \star U_{\mu}^{\dagger} \star U_{\nu}^{\dagger} - U_{\nu}^{\dagger} \star U_{\mu}^{\dagger} \star U_{\nu}\right)\right)^{(k)} \qquad \text{Perturbation order : } k$$

$$\star \text{-symbol : convolutional product}$$

• We accumulate the perturbative configuration by integrating MD eq.

$$\left\{ (U_{\mu,i}^{(0)}, \cdots, U_{\mu,i}^{(k)}, \cdots) \,|\, i = 1, \dots, N_{\text{sample}} \right\}$$

The coefficient of the expectation value are evaluate as the stochastic mean

$$\left\langle O[U] \right\rangle \simeq \sum_{k=0}^{\infty} \lambda^k \left\langle O^{(k)}[U^{(0)}_{\mu}, \cdots, U^{(k)}_{\mu}] \right\rangle, \qquad \left\langle O^{(k)}[U^{(0)}_{\mu}, \cdots, U^{(k)}_{\mu}] \right\rangle = \frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} O^{(k)}[U^{(0)}_{\mu,i}, \cdots, U^{(k)}_{\mu,i}]$$

Backup : Numerical integration for GF eq.

• Integration for the GF eq.

 We test the three integration method on single configuration for k = 7, SU(529) TEK model.

Euler method : $\mathcal{O}(\epsilon)$ 3-s. Crouch—Grossman method : $\mathcal{O}(\epsilon^3)$ Lüscher's scheme : $\mathcal{O}(\epsilon^3)$

- →All order coefficients have the same scaling for the finite step size ϵ .
- $\epsilon < 0.5$ sufficiently small.
- We use Lüscher's scheme with $\epsilon = 0.01$.

The scaling test for three method on a single configuration at k = 7, *SU*(529) TEK model.

Backup : Asymptotic form of $E(\hat{t})$

Backup : Asymptotic form of $Var(\hat{t}^2 E(\hat{t}))$

. The variance of $E_W(\hat{t})$ at tree-level

 $\operatorname{Var}(E_W(\hat{t})) \equiv \left\langle E_W(\hat{t})^2 \right\rangle - \left\langle E_W(\hat{t}) \right\rangle^2$

The tree-level solution of the variance

$$\operatorname{Var}(E_W(\hat{t}))|_{\operatorname{tree}} = \frac{3}{2N^4} \sum_{q}^{'} e^{-4\hat{t}\hat{q}^2}$$

There is the large-N factorization at positive flow time

$$\operatorname{Var}(E_W(\hat{t}))|_{\operatorname{tree}} \leq \frac{3(N^2 - 1)}{2N^4} \xrightarrow[N \to \infty]{} 0$$

In the large-N & large flow time
 The asymptotic form is

$$\sim \frac{3}{2N^2} \left(\frac{1}{(16\pi^2 \hat{t})^2} \left(1 + \frac{1}{16\hat{t}} + \cdots \right) - \frac{1}{N^2} \right)$$

$$\mathcal{O}(1/N^4) \text{ become large with}$$

• The Var $(r(\hat{t}))$ can be obtained from

$$\operatorname{Var}(r(\hat{t})) = \left(\frac{\hat{t}^2}{\mathcal{N}(\hat{t})}\right)^2 \operatorname{Var}(E_W(\hat{t}))$$

