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■基本デザイン要素

（1）基本デザイン要素

■大学名ロゴタイプ（和文）

■大学名ロゴタイプ（英文）

広島大学の学章に対応するロゴタイプの基本デザイン要素を示します。
■学章と大学名ロゴタイプの組み合わせ

○よこタイプ
学章と大学名ロゴタイプを組み合わせて使用する場合の推奨形を示します。

○たてタイプ
建物サイン、看板など、たて書き表記が必要な媒体で学章と大学名ロゴタイプを組
み合わせて使用する場合の推奨形を示します。

○中央揃えよこタイプ
センター、附属学校園などで、当該組織が広島大学のグループ組織であることを示
す場合に使用するための推奨形を示します。
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1. Motivation

4. Conclusion

• The flow time dependence 
• The large-N factorization

2. Strategy
• Twisted Eguchi̶Kawai model 
• The gradient flow with NSPT

3. Result

   Outline
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• The gradient flow in Yang̶Mills theory

  1. Motivation

- The composite operator does not diverge at positive flow time.

‣ The flow equation in the continuum

- The operator composed with the flowed gauge field does not require 
further renormalization and independent on regularization.

∂
∂t

Bμ(x, t) = −
δS
δBμ

( = DνGνμ(x, t)), Bμ(x,0) = Aμ(x)
 : Field strength Gμν(x, t) Bμ(x, t)

‣ We employ the gradient flow coupling for the renormalized coupling

λρ(μ) = 𝒩−1(t)⟨ t2E(t)
N ⟩

Flow time  and the energy density  t μ
μ2t = ρ

→ Important tool to connect lattice and continuum theory

L(z) = ln(2z) + γEb1 =
1

(16π2)2

2 ⋅ 34
3

 Normalization factor : 𝒩(t)

 : flow time ( = energy scale )t

• To compare experimental results written in the  scheme with the lattice results 
we need the relation between the  and a regularization independent schemes.

MS
MS

• The gradient flow coupling independent on regularization.

‣ To convert the lattice results to the results renormalized with the  
scheme we need the relation . 

MS

λρ(μ) ↔ λS(μ)

R.Narayanan, H.Neuberger, JHEP03(2006)064, M. Lüscher, JHEP08(2010)071

M. Lüscher, P.Weisz, JHEP02(2011)051.
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• The GF coupling

• The analytic relation between the GF coupling and the  scheme coupling 
for the SU( ) Yang̶Mills theory in the large-N limit at two-loop level.

MS

N

e1 =
1
2

b0L(ρ) + e1,0 , e1,0 =
1

16π2 ( 52
9

+
22
3

ln 2 − 3 ln 3)
e2 = e2,0 +

1
2 (2b0e1,0 + b1) L(ρ) + ( 1

2
b0L(ρ))

2
, e2,0 =

1
(16π)2

27.978

L(z) = ln(2z) + γE

b0 =
1

16π2

2 ⋅ 11
3

b1 =
1

(16π2)2

2 ⋅ 34
3

GF coupling :           coupling : λρ(μ) ↔ MS λS(μ)
R. V. Harlander and T. Neumann, JHEP, vol. 2016, June 2016.
J. Artz, et. al., JHEP, vol. 2019, June 2019.

‣Beta function‣Coefficients

λρ(μ) = 𝒩−1(t)⟨ t2E(t)
N ⟩

Flow time  and the energy density  t μ
μ2t = ρ

 Normalization factor : 𝒩(t)

‣ We would like to extract the relation  at more order for 

the large-  Yang̶Mills theory using the lattice perturbation theory.

λρ(μ) ↔ λS(μ)

N

  1. Motivation

λρ(μ) = λS(μ) + e1λS(μ)2 + e2λS(μ)3 + ⋯

e1, e2 b0, b1
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• We employ the numerical stochastic perturbation theory(NSPT). 

• The GF-NSPT can evaluate the GF coupling with  at finite-λ0 N

λρ(μ) = λ0 + r1( ̂t, N )λ2
0 + r2( ̂t, N )λ3

0 + r3( ̂t, N )λ4
0

→ By taking the large-  limit we obtain  N λρ(μ) = λ0 + r1( ̂t )λ2
0 + r2( ̂t )λ3

0 + r3( ̂t )λ4
0

 : dimensionless flow timêt

• Combining the Lüscher̶Weisz formula ( ) in the large-  with NSPT,λS(μ) ↔ λ0 N

λS(μ) = λ0 + c1(μa)λ2
0 + c2(μa)λ3

0 + ⋯
c1(μa) =

1
2

b0 ln(μa) + k1

c2(μa) = c1(μa)2 − b1 ln(μa) + k3

, k1 = 0.1699559992

, k3 = 0.00791012

we obtain the relation ,λρ(μ) ↔ λS(μ)

  2. Strategy

‣ The first study of GF-NSPT is in [                                                                 ] ( for SU(3) YMDalla Brida, M., Lüscher, M. Eur. Phys. J. C 77, 308 (2017)

with

 coupling : MS λS(μ)

GF coupling : λρ(μ) Lattice bare coupling: λ0

L.-W. formula
This work 
GF-NSPT

Harlander, et al.
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• Partition function

ZTEK = ∫
4

∏
μ=1

dUμe−STEK[U] STEK[U] = Nb
4

∑
μ,ν=1

Tr [I − zμνUμUνU†
μU†

ν ]

with the twist factor : zμν = exp [ 2πik

N
ϵμν]

• Effective volume :  V = (aL)4 = (a N )4 = a4N2

   for TEK model            for SU( ) Yang̶Mills theory⟨W[U]⟩TEK
N→∞ ⟨W[U]⟩ N

• In the large-  limit the trace of the closed loop operator N W[U]

ΓμΓν = zνμΓνΓμ

Inverse ’t Hooft coupling : b =
1

Ng2
=

1
λ

• Twisted Eguchi̶Kawai (TEK) model : The matrix model on one-site lattice with 
twisted boundary condition.

• TEK model is economical model to study the large-  SU( ) Yang̶Mills theory. N N

Only  link variables :   (  ) d Uμ μ = 1,⋯, d

• Action

• The space-time information is included in the twist eater

➡ In the NSPT we perturbatively expand  around the classical vacuum Uμ U(0)
μ = Γμ

  : coprime with k N

  2. Strategy   ~ Twisted Eguchi̶Kawai model ~

A. González-Arroyo, M. Okawa, Phys. Lett. B 120 (1983) 174. 

Γμ
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• NSPT : Numerical Stochastic Perturbation Theory

‣ It can be implemented by expanding the field and the action in terms of a coupling constant 
and integrating hierarchical stochastic differential equation.

⟨O[V; ̂t ]⟩ =
∞

∑
k=0

λk ⟨O(k)[V (0)
μ ( ̂t ), ⋯, V (k)

μ ( ̂t )]⟩, ⟨O(k)[V (0)
μ , ⋯, V (k)

μ ]⟩ ≃
1

Nsample

Nsample

∑
i=1

O(k)[V (0)
μ,i , ⋯, V (k)

μ,i ]

‣ NSPT numerically evaluates the perturbative coefficients for an observable without 
Feynman diagram => NSPT allows us to reach higher-order

Langevin eq., 
Molecular dynamics (MD) eq.

We expanded the link variable as Uμ =
∞

∑
k=0

λk/2
0 U(k)

μ

F. Di Renzo et al. Nucl. Phys. B 426.3(1994)

‣ We use the HMD-based NSPT for TEK model in [A. González-Arroyo, et al. JHEP 127(2019)].

d
d ̂t

V (k)
μ (x, ̂t ) = −

1
2 (Fμ[V ] ⋆ Vμ(x, ̂t ))

(k)
,

Vμ( ̂t = 0)(k) = U(k)
μ

F(k)
μ [U ] = (S(k)

μ − S(k)†
μ ) −

1
N

Tr (S(k)
μ − S(k)†

μ )
S(k)

μ = Uμ ⋆ ∑
ν≠μ

(Uν ⋆ U†
μ ⋆ U†

ν − U†
ν ⋆ U†

μ ⋆ Uν)
(k)

‣ We flow the perturbative configuration generated from NSPT. 

{(U(0)
μ,i , ⋯, U(k)

μ,i , ⋯) | i = 1,…, Nsample} {(V (0)
μ,i ( ̂t ), ⋯, V (k)

μ,i ( ̂t ), ⋯) | i = 1,…, Nsample}
Hierarchical flow

-symbol : convolutional product⋆

• Hierarchical GF equation • Force for TEK model
• The gradient flow with NSPT

➡We evaluate the coefficients of the GF coupling as the stochastic mean, 

(The vacuum : )U(0)
μ ( ̂t ) = Γμ

 : the coefficient of the flowed link variableVμ( ̂t )(k)

  2. Strategy   ~ The gradient flow with NSPT ~
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• The GF-NSPT can evaluate the GF coupling with  at finite-λ0 N

λρ(μ) = λ0 + r1( ̂t, N )λ2
0 + r2( ̂t, N )λ3

0 + r3( ̂t, N )λ4
0

→ By taking the large-  limit we obtain  N λρ(μ) = λ0 + r1( ̂t )λ2
0 + r2( ̂t )λ3

0 + r3( ̂t )λ4
0

 : dimensionless flow timêt

• From the flow time dependence (running behavior) of  we want to 
extract the beta function  and the constants  (= consistency check 
the ANA. and NSPT for ). 

λρ(μ) ↔ λ0

b0,1 f1,2

λρ(μ) ↔ λS(μ)

  2. Strategy

• Combining the two relations ( L.-W. formula and Harlander et al. result) we 
obtain the analytical coefficients for  at two-loop level in the continuum.λρ ↔ λ0

 λρ(μ) = λ0 + r1( ̂t )λ2
0 + r2( ̂t )λ3

0 + ⋯

r1( ̂t ) = b0 (ln 2 ̂t + γE) + f1 r2( ̂t ) = r1( ̂t )2 + b1 (ln 2 ̂t + γE) + f2

f1 = 0.21786205 f2 = 0.0067371

with

and b1 =
1

(16π2)2

2 ⋅ 34
3 and

 coupling : MS λS(μ)

GF coupling : λρ(μ) Lattice bare coupling: λ0

L.-W. formula
This work 
GF-NSPT

Harlander, et al.
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b0 =
1

16π2

2 ⋅ 11
3



• The parameter of the GF-NSPT simulation
‣ ,  SU( ) TEK modelk N

July 8, 2024

L N k |k̄| ✓ = |k̄|/L ⌧ NMD Statics

17 289 5 7 0.41176 1.0 32 5931

21 441 13 8 0.38099 1.0 32 3790

23 529 7 10 0.43479 1.0 32 2600

Table 1. The parameters for the NSPT algorithm and the TEK model.

We have to integrate the gradient flow equation Eq. (3.21) by using a numerical in-

tegration scheme with a finite discrete step size. There are several numerical integration

schemes available. We first test three numerical integration methods, the Euler method,

the Lüscher scheme [6], and one of the 3-stage Crouch–Grossman method 1 to determine

the su�cient integration step size with which the integration error becomes negligible than

the statistical error. Figuare 1 shows the step size dependence of the perturbative coe�-

cients of the gradient flow coupling at two flow times ,t̂ = 9.0, on a single configuration

at k = 7,N = 529. The Lüscher scheme (up-triangles) and the 3-stage Crouch–Grossman

method (boxes) are accurate up to errors of order O
�
✏
3
�
and show the faster convergence

than the Euler method (circles) to the zero step size limit as expected. We also observe

the similar behaviour for the smaller N . Therefore we employ the Lüscher scheme with

✏ = 0.01, hereafter because of the economical computational cost and small integration

error compared to other schemes.

Figure 1. The scaling of Euler method, 3-stage Crouch–Grossman method, and Lüscher scheme
at t̂ = 9.0 (Top figures). The bottom figures is same as Top one, but the x-axis is ✏3 without Euler
method.

1We employed the Butcher tableau of the right panel in Table 8.1 of Ref. [11]

– 7 –

The parameters for the NSPT and TEK model

- We employ the three matrix sizes .N = 289, 441, 529 (L2 = 172, 212, 232)
- In order to take the smooth large-  limit we have to keep 
the phase .

N
θ = 2π | k̄ | / N

Fix the phase parameter .θ ≃ 0.40

A. González-Arroyo, M. Okawa, JHEP 07(2010) 043.

‣ Integration for the GF eq.
- We use Lüscher’s scheme with  
as the numerical integration method.

ϵ = 0.01

The integration error is .𝒪(ϵ3)

 is sufficiently small compared 
to the statistical error.
ϵ = 0.01
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‣HMD-based NSPT
- We use the HMD-based NSPT for TEK 
model in [A. González-Arroyo, et al. JHEP 127(2019)].

  3. Result   ~ The parameters ~

(  )kk̄ = 1, (mod N )



July 8, 2024

Figure 2. The flow time dependence of the coe�cient r1(t̂) and r2(t̂) extrapolated to the large-N .
The red cross points and black dashed line are the extrapolation results and continuum expression
Eq. (3.29).

Figure 3. The flow time dependence of the coe�cient r1(t̂) at large-N . The left (right) figure
shows the result of the fitting in the flow time region t̂ 2 [2.1, 6.3] (t̂ 2 [0.9, 6.3]). The red cross
points and black dashed line are same as Fig. 2. The blue and green solid line are the fit function
f(x) and g(x), respectively. (The shadow regions are the error of the fitting.)

Fit function  B0 F1 A0 �
2
/Ndof

Analytical Value 0.046439 0.217862 – –

f(x) 10�8 0.03762(144) 0.22959(60) – 3.2

g(x) 10�9 0.04725(349) 0.21778(337) 0.00577(139) 4.2

Table 3. The table is same as Table. 2, but the fit region is t̂ 2 [0.9, 6.3].

– 10 –
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The red cross points and black dashed line are the extrapolation results and continuum expression
Eq. (3.29).
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Fit function  B0 F1 A0 �
2
/Ndof

Analytical Value 0.046439 0.217862 – –

f(x) 10�8 0.03762(144) 0.22959(60) – 3.2

g(x) 10�9 0.04725(349) 0.21778(337) 0.00577(139) 4.2
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– 10 –

• The flow time dependence of the GF coupling

λρ(μ) = λ0 + r1( ̂t )λ2
0 + r2( ̂t )λ3

0

‣  We extrapolate the finite-  (289,441,529) results to large-  (Red crosses).N N

One-loop coefficient r1( ̂t ) Two-loop coefficient r2( ̂t )

‣ At small  the effect of a lattice artifact becomes large : ̂t 𝒪(a2 /t)

‣ At large  the effect of a finite volume becomes large : ̂t 𝒪(t /V )

➡ We can control the lattice artifact at small  .̂t

lattice artifact 𝒪(a2 /t)

finite volume 𝒪(t /V )

  3. Result   ~ The flow time dependence ~

‣ The analytical result (black dashed line) in the continuum.
• The deviation between the GF-NSPT and the continuum result

➡ We need  to suppress the correction under 10% at  ! ( From the tree-level analysis )N > 600 ̂t = 7.0
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  3. Result   ~ The flow time dependence ~
• The flow time dependence of the one-loop coefficient r1( ̂t )

‣ We correlated fit the NSPT results with ,  in two regions .f ( ̂t ) g( ̂t ) ̂t ∈ [2.1,6.3] and [0.9,6.3]

f ( ̂t ) = B0 (log( 2 ̂t ) +
γE

2 ) + F1 ,  g( ̂t ) = B0 (log( 2 ̂t ) +
γE

2 ) + F1+
A0

̂t
lattice artifact term 

𝒪(a2 /t)

July 8, 2024

Fit function  B0 F1 A0 �
2
/Ndof

Analytical Value 0.046439 0.217862 – –

f(x) 10�10 0.04315(222) 0.22466(139) – 12.3

g(x) 10�10 0.04349(748) 0.22419(1009) 0.00030(634) 12.1

Table 2. The fit parameter of the coe�cient r1(t̂) in the flow time region t̂ 2 [2.1, 6.3]. The  is
the cut-o↵ size for the eigenvalue of the covariance matrix. The results of the cuf-o↵ method are
plotted in Fig. 3.

error. We observe the near zero eigenvalues of C in double precision so that the leas squares

fitting yields unrealistic fit results. To avoid this problem we use the cut-o↵ method [12],

where the small eigenvalues below a cut-o↵ value are dropped from the covariance matrix.

Figure 3 is the fit results for the one-loop coe�cient r1(t̂). We employ two fit regions,

t̂ 2 [2.1, 6.3] (Left panel) and [0.9, 6.3] (Right panel), to see the e↵ect of the lattice artifact

O
�
a
2
/t
�
term. The finite volume e↵ect O

�
t
2
/V

�
increase with the flow time O

�
t
2
/V

�
.

From the tree-level analysis in appendix B we need N > 670 to suppress this correction

under 10% at t̂ = 7.5. We only have data sets at N = 289, 441, 529 which does not satisfy

this condition so that our simple linear extrapolation in 1/N2 does not work. Thus we drop

the results in the large flow time t̂ > 6.3. In the small time region t̂ < 0.9 the dominant

e↵ect of the lattice artifact is not only O
�
a
2
/t
�
but also O

�
a
4
/t
�
, then we use the results

in t̂ � 0.9. Since the results with the clover type operator is identical with those with the

Wilson type operator in this flow time region, we only show the results with the clover

type operator.

The crosses and dashed line are the same as those in Fig. 2. The blue and green solid

lines with shadow represent the fit results with the cut-o↵ method. The fit results for B0,F1

and A0 are shown in Tables 2 and 3. We observe the larger values of �2
/Ndof for the fit

results in t̂ 2 [2.1, 6.3] (Table 2) than those in t̂ 2 [0.9, 6.3] (Table 3). The coe�cient A0

for the lattice artifact has no e↵ect in t̂ 2 [2.1, 6.3], while it has non zero contribution in

t̂ 2 [0.9, 6.3]. In table 3 the fit result with fit function g(x) is consistent with the analytic

values of B0 and F1, indicating that there exists the flow time window where the lattice

artifact is su�ciently under control.

Next we explain the two-loop results in Fig. 4. Figure 4 is the extrapolation results of

two-loop coe�cient r2(t̂) (red circles). We fit the data with the following fit function,

f(t̂) = r1(t̂)
2 +B1

⇣
log

⇣p
2t̂
⌘
+

�E

2

⌘
+ F2, (4.4)

where r1(t̂) is the analytical value Eq. (3.29) and B1, F2 are fit parameters. The fit region

is t̂ 2 [0.9, 4.8] which is the same as that of r1(t̂) and the results of fitting are in Table ??.

The figure 4 shows the subtracted coe�cient r2(t̂)� r1(t̂)2. Although our extrapolate data

seems to be consistent with the analytical values within the statistical error as seen in

Fig ??, the two-loop beta function evaluated from the NSPT has the large error.

– 9 –

① Fit in ̂t ∈ [2.1,6.3] ② Fit in  (include small  )̂t ∈ [0.9,6.3] ̂t

July 8, 2024
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Fit function  B0 F1 A0 �
2
/Ndof

Analytical Value 0.046439 0.217862 – –

f(x) 10�8 0.03762(144) 0.22959(60) – 3.2

g(x) 10�9 0.04725(349) 0.21778(337) 0.00577(139) 4.2

Table 3. The table is same as Table. 2, but the fit region is t̂ 2 [0.9, 6.3].

– 10 –

- The large lattice artifact 
-  is sufficiently under control 
- Small error (compare with ①)

𝒪(a2 / ̂t )
- The small lattice artifact

‣ Highly correlated data (Chi-square worse diverge)→ Use the Cut-off chi-square [arXiv:1101.2248]

‣ The one-loop result well reproduces the beta function  and the coefficient .b0 f1

Flow time ̂tFlow time ̂t
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  3. Result   ~ The flow time dependence ~
• The flow time dependence of the two-loop coefficient r2( ̂t )
‣ The analytical form of  isr2( ̂t )

‣ We fit  withr2( ̂t ) − r1( ̂t )2

r2( ̂t ) = r1( ̂t )2+ b1 (ln 2 ̂t +
γE

2 ) + f2

f ( ̂t ) = B1 (log( 2 ̂t ) +
γE

2 ) + F2

‣ The order is consistent with the 
continuum one. 

‣ The large error & poor fit result.
➡Need more large  result 
and stochastic samples

N

• Is there large-  factorization of the coefficient at positive flow time  ?N ̂t

The large-  factorization reduces 
the sample size at large- .

N
N

Fit in ̂t ∈ [0.9,4.2]

July 22, 2024

Fit function  B0 F1 A0 �
2
/Ndof

Analytical Value 0.046439 0.217862 – –

f(x) 10�8 0.03762(144) 0.22959(60) – 3.2

g(x) 10�9 0.04725(349) 0.21778(337) 0.00577(139) 4.2

Table 3. The table is same as Table. 2, but the fit region is t̂ 2 [0.9, 6.3].

Fit function Method  B1 F2 �
2
/Ndof

Analytical Value 0.00090897 0.00673711 –

f(x) Diag. – 0.00222(444) 0.00556(240) 0.04

Table 4. The fit parameter of the coe�cient r2(t̂) � r1(t̂)2 in the flow time region t̂ 2 [2.1, 6.3].
The  is the cut-o↵ size for the eigenvalue of the covariance matrix.

Figure 4. Same as Fig. 3, but for r2(t̂)� r1(t̂)2.

4.3 Large-N factorization

The large-N factorization is the important property for the gauge theory in the large-N

limit. According to the large-N gauge theory, the expectation value of the product of the

gauge invariant operator O1, . . . , On becomes the product of the expectation value of the

single gauge invariant operator in the large-N limit [13, 14],

hO1 · · ·Oni = hO1i · · · hOni+O

✓
1

N2

◆
. (4.5)

The large-N factorization of the expectation value of the perturbation coe�cient is con-

firmed in Ref.[4, 9]. On the other hand the large-N factorization of flowed operator O(t̂)

at finite flow time is not trivial. In this section we check the large-N factorization of the

flowed operator at finite flow time through the variance of flowed operator. The factoriza-

tion implies that the variance Var(O) behave in the large-N as

Var(O(t̂)) =
⌦
O(t̂)O(t̂)

↵
�
⌦
O(t̂)

↵ ⌦
O(t̂)

↵
! 0 (N ! 1). (4.6)

– 11 –

‣ We confirm the factorization with the variance of the coefficient,
Var(O) ≡ ⟨O2⟩ − ⟨O⟩2 N→∞ 0

‣ The large-  factorization is .N ⟨O1O2⟩ = ⟨O1⟩⟨O2⟩ + 𝒪(N−2)

We check the variance of  →ri( ̂t )
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The simple linear extrapolation of  
at , assuming  dependence. 

Var (ri( ̂t ))
̂t = 6.0 1/N2

two-loop : Var (r2( ̂t )) three-loop : Var (r3( ̂t ))

one-loop : Var (r1( ̂t ))tree-level :  Var (r0( ̂t ))

The variance  at  v.s. volume Var (ri( ̂t )), (i = 0,1,2,3) ̂t = 6.0 1/N2

  3. Result   ~ The large-N factorization ~
• The variance of coefficients Var (ri( ̂t ))

‣ The variance is reduced with .N

1 Fitting the coe�cients of gradient flow coupling

Coe↵. Var(ri)|N!1
r0(t̂ = 6.0) 3.36(0.46)⇥ 10�3

r1(t̂ = 6.0) 6.06(0.63)⇥ 10�3

r2(t̂ = 6.0) 2.15(0.19)⇥ 10�2

r3(t̂ = 6.0) 8.70(0.73)⇥ 10�2

Table 1. The extrapolation results of the variance of the coe�cients at t̂ = 6.0.

References

1

The large-  variance is small 
but does not becomes ZERO!

N

‣ The tree-level is consistent with ANA..

The finite volume effect grow with the flow time.

➡ We can not see the zero variance at large-  
from simple linear extrapolation with .

N
1/N2

 become large𝒪(t2 /N4)

‣ We confirm the large-  factorization at 
positive flow time from tree-level analysis.

N

• The estimation of sample size
‣ We can estimate  at large  fromNsample N

Nsample ≃
Var(O( ̂t ))

⟨O( ̂t )⟩2 ( ⟨O( ̂t )⟩
δO( ̂t ) )

2

Non-zero 
value !

Relative error

‣  with relative error  at .Nsample 1 % ̂t = 7.0, N = 729
one-loop    :  
two-loop    : 

Nsample ≃ 600

Nsample ≃ 15200

A. González-Arroyo, et. al, Modern Physics A Vol. 37, No. 36 (2022). 

   Var(EW( ̂t )) |tree =
3

2N4

′ 

∑
q

e−4 ̂t ̂q2 ≤
3(N2 − 1)

2N4
N→∞ 0
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We can compute 
within a year.



  4. Conclusion
•We compute the coefficients of the GF coupling by using the NSPT for 
TEK model and analyze the running behavior (flow time dependence).

‣ The one-loop result is consistent with continuum result. 
‣ The two-loop result has the consistency with ANA. but has the large 
statistical error.

• We confirm the large-  factorization at finite flow time at tree-level result. 
• The large-  factorization exist at positive flow time. 
• Our finite  results does not reproduce zero variance at large-  from 
simple linear extrapolation .

N

N

N N
1/N2

‣ The reason is that the finite volume effect grows with .  (Large  term)̂t 𝒪(t2/N4)

We need more large matrix size  and statistical samples.N

•Future work
‣ We will compute the GF coupling with more large . 
‣ We want to relate GF coupling to an other renormalized coupling by 
using only NSPT calculation.

N

➡Reduce the finite volume effect
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   Thank you !
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   Backup
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• NSPT for TEK model
‣ We generate the perturbative configuration with the HMD based NSPT

The expanded link variable : Uμ =
∞

∑
k=0

λk/2U(k)
μ

dU(k)
μ

dτ
= i (Pμ ⋆ Uμ)

(k)

dP(k)
μ

dτ
= F(k)

μ [U ]

F(k)
μ [U ] = (S(k)

μ − S(k)†
μ ) −

1
N

Tr (S(k)
μ − S(k)†

μ )

Hierarchy molecular dynamics equation for TEK model

S(k)
μ = Uμ ⋆ ∑

ν≠μ
(Uν ⋆ U†

μ ⋆ U†
ν − U†

ν ⋆ U†
μ ⋆ Uν)

(k)

(The vacuum : )U(0)
μ = Γμ

‣ We accumulate the perturbative configuration by integrating MD eq.

Backup : HMD based NSPT for TEK model

Dalla Brida, M., Lüscher, M. Eur. Phys. J. C 77, 308 (2017)

‣ We use the HMD-based NSPT for TEK model in [A. González-Arroyo, et al. JHEP 127(2019)].

Perturbation order : k
-symbol : convolutional product⋆

{(U(0)
μ,i , ⋯, U(k)

μ,i , ⋯) | i = 1,…, Nsample}

⟨O[U ]⟩ ≃
∞

∑
k=0

λk ⟨O(k)[U(0)
μ , ⋯, U(k)

μ ]⟩, ⟨O(k)[U(0)
μ , ⋯, U(k)

μ ]⟩ =
1

Nsample

Nsample

∑
i=1

O(k)[U(0)
μ,i , ⋯, U(k)

μ,i ]

‣ The coefficient of the expectation value are evaluate as the stochastic mean
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• Integration for the GF eq.
‣ We test the three integration 
method on single configuration for 

 SU( ) TEK model.k = 7, 529

Euler method  : 𝒪(ϵ)
3-s. Crouch̶Grossman method : 𝒪(ϵ3)

Lüscher’s scheme : 𝒪(ϵ3)

The scaling test for three method on a single 
configuration at  TEK model. k = 7, SU(529)

(Right Figures are without Euler method)

➡All order coefficients have the same 
scaling for the finite step size .ϵ

‣We use Lüscher’s scheme with .ϵ = 0.01

Backup : Numerical integration for GF eq.

‣  sufficiently small.ϵ < 0.5
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Figure 19. The flow time dependence of the tree-level energy density t̂2E(t̂)/N .

Figure 20. N dependence of the tree-level energy density at t̂ = 3, 6, 9, 12.
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Figure 19. The flow time dependence of the tree-level energy density t̂2E(t̂)/N .

Figure 20. N dependence of the tree-level energy density at t̂ = 3, 6, 9, 12.
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• The energy density EW( ̂t )

EW( ̂t ) =
1
N

Tr (I − zμνVμ( ̂t )Vν( ̂t )Vμ( ̂t )†Vν( ̂t )†)

̂t2EW( ̂t )
N

tree

=
3 ̂t2

2N2

′ 

∑
q

e−2 ̂t ̂q2 =
3 ̂t2

2
e−16 ̂t [I0(4 ̂t ) + 2

∞

∑
k=1

Ik N(4 ̂t )]
4

−
3 ̂t2

2N2

∼
3

128π2 [1 +
1
8 ̂t

+ ⋯]−
3 ̂t2

2N2

‣ The tree-level solution of 

‣ Asymptotic form in the large flow time
Time slice at 

.̂t = 3,6,9,12

Backup : Asymptotic form of E( ̂t )

̂t2EW( ̂t )

(In continuum )3/128π2

‣ The finite volume effect grow with flow time.
➡ We can not ignore 𝒪(t4 /N4)

The simple linear extrapolation 
with  is difficult→f (N ) = A0 + A1/N2

̂t = 3.0 ̂t = 6.0

̂t = 12.0̂t = 9.0

∼
3 ̂t 2

2N 2

′ 

∑
q

e−2 ̂t ̂q2 =
3 ̂t 2

2
e−16 ̂t I0(4 ̂t ) + 2

∞

∑
k=1

1

2πk N ( 2e ̂t

k N )
k N

4

−
3 ̂t 2

2N 2

‣ In the large-N
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Figure 2. The time slice of Fig. 1 versus square inverse of matrix sizes N at six flow times

t̂ = 0, 3, 6, 9, 12, 15.
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• The variance of  at tree-levelEW( ̂t )

Var(EW( ̂t )) ≡ ⟨EW( ̂t )2⟩ − ⟨EW( ̂t )⟩2

‣ The tree-level solution  of the variance

Backup : Asymptotic form of Var( ̂t2E( ̂t ))

‣There is the large-  factorization 
at positive flow time

N

∼
3

2N2 ( 1
(16π2 ̂t )2 (1 +

1
16 ̂t

+ ⋯) −
1

N2 )

‣ In the large-  & large flow time      
The asymptotic form is

N

Var(EW( ̂t )) |tree =
3

2N4

′ 

∑
q

e−4 ̂t ̂q2

Var(EW( ̂t )) |tree ≤
3(N2 − 1)

2N4 N→∞
0

 become large with 𝒪(1/N4) ̂t

The variance v.s. matrix size :  at 
.

1/N2

̂t = 0,3,6,9,12,15

‣ The  can be obtained fromVar (r( ̂t ))

Var(r( ̂t )) = (
̂t2

𝒩( ̂t ) )
2

Var(EW( ̂t ))
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