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Introduction

• Lattice field theories on curved spacetimes 
open up new branches of theoretical study 
- Nonperturbative calculation on curved space 

- Infinite volume calculations for CFT w/ Riemann projection or radial quantization

• Difficulty: 

• Half step forward: 

We need to give up rectangular lattice and its symmetries;
discretization of curved manifolds often done w/ simplicial decomposition

Flat space but with stressed metrics “affine transformation”
→ may be possible to reconstruct theory on curved space from tangential info

→ Rich’s next talk 

→ George’s poster

• An essential quantity in any of these directions: energy-momentum tensor
- measures the linear response to metric perturbation by definition.

- In 2D CFT, it is related to the background geometry transparently
𝐿! changes 𝜏 on 𝑇", 𝑇#

# = − $
%"𝑅 (trace anomaly)

- Even on regular lattices, its definition requires care on discretized spacetime; 
more for simplicial lattices as translation is even more screwed up 2/19

→ infinite volume scattering from lattice, …?

e.g., Regge 1961, Friedberg-Lee 1984

Brower-Cheng-Weinberg-Fleming-Gasbarro-Raben-Tan 2018

→ vacuum structure under curvature, BH background, …?

e.g., Owen-Brower 2023



This talk

• Thoroughly study EM tensor of the 2D Ising CFT on 𝑇":

- w/ arbitrary modulus 𝜏, on hexagonal lattice (dual to simplicial, triangular lattice)

- Both in spin and Majorana variables

- Including overall normalization and one-point function

• Previous work on lattice: Kadanoff-Ceva 1970

- On rectangular lattice, before the developments of CFT (cf. BPZ 1984)

- Require antisymmetrization from the original expression 
to remove contribution from the descendants of 𝜀

• Nontrivial points on non-regular lattice

- Naive 𝜏%," derivatives do not give a suitable EM tensor operator

- Free Majorana fermion but nontrivial mixing of operators occurs;
can be fully described geometrically by the relative shift between the e/o lattices

𝜏 ≡ 𝜏! + 𝑖𝜏": modulus

- Not all lattice operator works consistently as the EM tensor (under different BC)

3/19
This talk mainly focuses on these technicalities



• 𝑇'( changes 𝜏 by the effect of 𝐿!

𝑇 = 2𝜋𝑖	𝜕!ln	𝑍"#$% 𝜏, ̅𝜏

𝑇 ≡ 𝑇## =
1
2
𝑇$$ − 𝑖𝑇$%

𝑍)*+, ≡ Tr-./0 𝑃1.2	𝑞
3&4

%
56	 0𝑞73&4

%
56 	

𝑃'() ≡
1 + −1 *

2

𝑞 ≡ exp 2𝜋𝑖𝜏
=
1
2

Tr0 −1 8𝑞3&4
%
560𝑞73&4

%
56 + Tr0 𝑞3&4

%
560𝑞73&4

%
56 +

+Tr-. 𝑞3&4
%
560𝑞73&4

%
56 + Tr-. −1 8𝑞3&4

%
560𝑞73&4

%
56

𝐹: fermion number

≡
1
2
𝑍9:%)*+, + 𝑍9:")*+, + 𝑍9:;)*+, + 𝑍9:5)*+,

=
0

• Ising CFT partition function as free fermion theory:

Eguchi-Ooguri 1986

Review1: 2D Ising CFT on 𝑇"

𝐿! = 4
<∈ℤ+&4%/"

𝑘	𝑎4<𝑎<

𝐿! = 4
<∈ℤ+&

𝑘	𝑎4<𝑎< +
1
16

(ABC=NS)

(PBC=R)
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∵ zero modes

𝑎<: fermion operator for the Fourier mode 𝑘

𝑎,, 𝑎- = 𝛿,.-

𝜈 = 1, 2, 3, 4 ⇔ PP, PA, AA, AP in (space, time)

Onsager 1944, 
Schultz-Mattis-Lieb 1964,
Itzykson 1982, BPZ 1984, 
Francesco-Saleur-Zuber 1987



Exact mapping via loop expansion on 𝑇"

Review2: 2D Ising model on hexagonal lattice

• Spin partition function

𝑍@ ≡4
{B}

exp 4
D∈E,F

𝛽F 𝑠D𝑠D/ GF (𝑠$ = ±1)

• Wilson-Majorana partition function

𝑍H9 ≡ ∫ 𝑑𝜉 9	exp −
1
24

D

̅𝜉D𝜉D +
1
2 4
D∈E,F

𝜅I ̅𝜉D 1 − 𝛾#𝑒F
# 𝜉D/ GF

• Parametrization of the hexagonal lattice

(𝑀 = 𝐴,𝐵, 𝐶)𝑒F' ≡
ℓF∗ '

ℓF∗
	

ℓ&∗ ℓ(∗
ℓ)∗

ℓ(
ℓ&

ℓ)

𝜎* = 𝑥

𝜎+𝑦
𝝉

𝟏

𝛼F

𝑒I
𝑒K

𝑒L
𝛼L

𝛼K

𝜈 = 1, 2, 3, 4 ⇔ PP, PA, AA, AP in 𝜎!, 𝜎"

𝑍@ =
1
24

9

−1 M/,1

2N∏cosh	𝛽DO
𝑍H9
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Periodic-Periodic in 𝜎!, 𝜎"
tanh	𝛽2 = 𝜅2

cos𝜃3 	cos𝜃4
cos𝜃2

Samuel 1980,
Itzykson 1982,
Wolff 2020, 
Brower-Owen 2023



Usually, the continuum path integral is 
regularized with zeta function regularization, 
which does so cleanly w/o such 𝜏!," dependence.

𝑇DD 9 = 2𝜋𝜕P5ln	𝑍9
)*+, 𝜏%, 𝜏"

≈ 2𝜋𝜕P5	ln 𝒩
4% 𝜏%, 𝜏"; 𝐿 	𝑍9QR, 𝜏%, 𝜏"; 𝐿

𝜕6! ln	𝑍7
89: = −K

;

𝜕𝜅;
𝜕𝜏"

𝜕𝑆789:

𝜕𝜅;
+
𝜕𝑒;<

𝜕𝜏"
𝜕𝑆789:

𝜕𝑒;< 7

89:

𝜕𝜅;
𝜕𝜏"

𝜕𝑆789:

𝜕𝜅;
+
𝜕𝑒;<

𝜕𝜏"
𝜕𝑆789:

𝜕𝑒;<
=
𝜕𝜅;
𝜕𝜏"

K
$∈>

1
2
̅𝜉$ 1 − 𝛾 ⋅ 	𝑒; 𝜉$. ?; +K

;

𝜕𝑒;<

𝜕𝜏"
K
$∈>

̅𝜉$𝛾<𝜉$. ?;

Not easy to map to the spin system

𝜏%," dependence on 𝒩 𝜏%, 𝜏"; 𝐿
remains in the 𝐿 → ∞ limit,
that would be only canceled by 
a divergent part of the fermion bilinear operator

𝜏! = cos
7𝜋
18

• Fermion bilinear part:

• Constant part

𝜏*,+ derivatives on the lattice

• Defining a local operator from a global discussion is ambiguous

Utilize 𝜏%," derivatives?

6/19We rather take a conventional lattice strategy

(cf. need of antisymmetrization for Kadanoff-Ceva 1970)

(𝜏 = 𝜏% + 𝑖𝜏")



• We consider the lattice operator:

4𝑇-,./0% ≡
1
2
̅𝜉- 1 − 𝛾1𝑒.

1 𝜉-2 3. −
1
4

̅𝜉-𝜉- + ̅𝜉-2 3.𝜉-2 3.

• To calculate the mixing matrix, naively, one may use:

𝑇-,./0% ≡
2𝜋
𝑠

1
ℓ.∗

4𝑇-,./0%

Coming back to Symanzik-type construction

easily mappable to the spin system
via loop expansion

𝑠 ≡ ∑" ℓ"
∗

"
: semiperimeter;

supplies dimension

However, “?” turns out to be negative for nonregular lattices
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𝜉-2 3. = 𝜉- + ℓ.∗ 𝑒.4 𝜕4𝜉- + 𝑂 𝑎+ ,
which implies:

4𝑇-,./0% = − ℓ.∗ ⋅ 𝑒.
1𝑒.4

1
2
̅𝜉-𝛾1𝜕4𝜉- ⋅ 1 + 𝑂 𝑎

?

?

• Mixing of 𝑇, 0𝑇 (and 1) can be resolved by the three projected components 𝑇F

hopping
1
2
̅𝜉$ 1 − 𝛾B𝑒;

B 𝜉$. ?;

𝜀-𝜀-2 3.mass op

𝑇. ∼

projected EM tensor: 𝑒F'𝑒F
(𝑇'(



𝐿 = 72 𝐿 = 96

𝐿 = 120 𝐿 = 144

𝜏 = 𝑒STU/%6

• Mixing of 𝑇 and 0𝑇 differs from the prediction from the classical expansion:

Deviation from the prediction of classical expansion

Deviation remains in the continuum limit.

deviation
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• Contribution from 1 dropped by taking connected part

𝑇I 𝑥 𝑇I 0 ;,$

red: from lattice op 𝑇2
blue: predicted exact expression
positive region is shown



\𝑇D,FQR, =
1
2
̅𝜉D 1 − 𝛾#𝑒F

# 𝜉D/ GF −
1
4

̅𝜉D𝜉D + ̅𝜉D/ GF𝜉D/ GF

• With such possibility:

∝ 𝑒F' 𝑒̃F
(𝑇'(

• Lattice translation holds only for e/o sublattices, 
which cannot constrain their relative position to the classical prediction:

original sites when constructing the action shifted sites in constructing the observables

e=red
o=blue

Source of deviation
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This allows 𝜉D/ GF to float and redeclare its location in the observables: 

𝜉D/ GF = 𝜉D + ℓ̀F∗9𝜕9𝜉D + 𝑂 𝑎" 𝑒̃;7 ≡ cos 𝛼; + 𝛿𝛼; , sin 𝛼; + 𝛿𝛼; C

two different vectors; one known, one unknown

centers of hexagons
=

gray

𝑥 ∈ 𝑒

(𝜏 = 1.2𝑒!"#/%)

= 𝜉D + ℓ̀F∗ 𝑒̃F9 𝜕9𝜉D + 𝑂 𝑎"

different from original ℓ;∗



• Fit an IR part of the correlators 𝑇FQR, 𝑥 𝑇\QR, 0 9,)*++

Shift params converges to a universal value as 𝐿 → ∞ irresp of 𝜈

𝜏 = 𝑒STU/%6

𝜏 = 1.2𝑒5TU/]

Determining the shift params 

ℓ&∗

Cℓ&∗

modified length |ℓ̀I∗ | angle shift 𝛿𝛼I

10/19

𝛿ℓ&∗

suggesting the existence of a consistent continuum limit



𝐿 = 72 𝜏 = 1.2𝑒EFG/I

𝜈 = 3

Confirming the correction
𝐿 = 144
𝜏 = 𝑒JFG/!K

𝜈 = 3

deviation

gone!
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Possibly 2 x 3 mixing parameters
explained only with 2 param shift

• In fact, staggered bumps disappears in the fermion correlators
⟨𝜂 𝑧 𝜂 0 ⟩: holomorphic

𝑇I 𝑥 𝑇I 0 ;,$

𝑇K 𝑥 𝑇K 0 ;,$ 𝑇L 𝑥 𝑇L 0 ;,$



• 𝑇FQR, 9 further has a divergent part on the lattice
because of the Wilson term:

Divergent part again converges to a universal value as 𝐿 → ∞ irresp of 𝜈:

𝜏 = 1.2𝑒5TU/]𝜏 = 𝑒STU/%6

When properly regularized, 
½ d𝜓𝜓 LMN 7O!

= 𝜀 7O! = 0 

This contribution dropped 
here for simplification

NB Determined independently of the shift parameters

Ferdinand-Fisher 1969,
Francesco-Saleur-Zuber 1987

Mixing with 1: One point function

• Finite volume (torus) → 𝑇 9 ≠ 0 in the continuum

12/19

clean 𝑎" scaling

4YyTo4 = ◦ ( Va)

444 = ◦ Cha )

wrap around
propagation



• 𝑇FQR, 9 further has a divergent part on the lattice
because of the Wilson term:

Divergent part again converges to a universal value as 𝐿 → ∞ irresp of 𝜈:

𝜏 = 1.2𝑒5TU/]𝜏 = 𝑒STU/%6

When properly regularized, 
½ d𝜓𝜓 LMN 7O!

= 𝜀 7O! = 0 

This contribution dropped 
here for simplification

NB Determined independently of the shift parameters

Ferdinand-Fisher 1969,
Francesco-Saleur-Zuber 1987

Mixing with 1: One point function

• Finite volume (torus) → 𝑇 9 ≠ 0 in the continuum

12/19

clean 𝑎" scaling

4YyTo4 = ◦ ( Va)

444 = ◦ Cha )

propagation
wrapping around



• One might regularize 𝑇FQR, by subtracting the divergent part: 

• However, 𝑇F
QR,,^

9 does not approach the continuum value 𝑒F' 𝑒̃F
(𝑇'(

9
and the deviation differs by 𝜈:

• This finite shift may not be regarded as 
a finite part of the renormalization as it depends on the BC 𝜈.

𝑇F
QR,,^ themselves do not behave consistently 

as the projected EM tensor operator when including one-point function.

𝑇F
QR,,^ ≡ 𝑇FQR, −

𝐶F
𝑎

𝜏 = 1.2𝑒EFG/I

Nonuniversal finite part of 𝑇./0% 4

13/19

if continuum value



𝑇DDQR, ≡4
F

𝐶DD,F	𝑇FQR, ≃ 1 ⋅ 𝑇DD + 0 ⋅ 𝑇DO +
0
𝑎
+4

F

𝐶DD,F𝛣F,9 + 𝑂 𝑎

By constructing 𝑇'(QR, as a linear combination of 𝑇FQR, s.t. the divergent part cancels,
the finite part likely also cancels for every 𝜈.

𝑇FQR, ≃ cos 2𝛼F + 𝛿𝛼F 𝑇DD + sin 2𝛼F + 𝛿𝛼F 𝑇̀DO +
𝛢F
𝑎
+ 𝛣F,9 + 𝑂 𝑎

𝑇DOQR, ≡4
F

𝐶DO,F	𝑇FQR, ≃ 0 ⋅ 𝑇DD + 1 ⋅ 𝑇DO +
0
𝑎
+4

F

𝐶DO,F𝛣F,9 + 𝑂 𝑎

by the choice of 𝐶DD,F, 𝐶DO,F can exist in principle but cancels

𝑇'(
QR, uniquely constructed from 𝑇FQR,

• Nontrivial point:

i.e.,

Consistent EM tensor operator
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𝑇 " ≈ −1.5869 43 − 0.0873(33)
exact: −1.5860	 − 0.0899

𝑇 ; ≈ +0.3147(30) − 0.8645(24)

𝑇 5 ≈ +1.2718 41 + 0.9530(35)

exact: +0.3132	 − 0.8606

exact: +1.2727	 + 0.9506

𝑇 " ≈ −1.669 23 − 0.0038(88)
exact:−1.651	 − 0.0227

𝑇 ; ≈ +0.4524(88) − 0.2909(26)

𝑇 5 ≈ +1.217(15) + 0.2974(78)

exact: +0.4437	 − 0.2831

exact: +1.207	 + 0.3058

Thus-obtained 𝑇'( 9
 from lattice

𝑐! + 𝑐%𝑎 + 𝑐"𝑎" fit (errors fully systematic)

Numerics

→ reasonable agreement

15/19

𝜏 = 1.2𝑒5TU/]𝜏 = 𝑒STU/%6



Alternative scheme for shift parameters: fix the 1pt functions
• Fitting all 𝜈 simultaneously → clean 𝑎" scaling

-0.11824455(48)0.96837989(13) -0.136754468(41)0.917506302(89)
-0.1458(34)0.9015(63)-0.11897(44)0.9688(11)

1pt
IR of 2pt

We use the values from the 1pt scheme below

Determining the shift params (revisited)

length |ℓ2∗ | angle shift 𝛿𝛼2

16/19

• Gives more precise values, two schemes in a tolerable agreement:

(errors fully systematic)

|ℓ2∗ | 𝛿𝛼2 |ℓ2∗ | 𝛿𝛼2



exact

Full contour plot

• 𝑇DD 𝑧, ̅𝑧 𝜀 𝑧%, ̅𝑧% 𝜀 𝑧", ̅𝑧" ;,$ with fermionic variables

Conformal Ward identities – I. fermion variable

𝑧! = 0, 𝑧" = 1/3, 𝐿 = 144

conformal Ward identity
on torus:
Eguchi-Ooguri 1986

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

y

-160

-120

-80

-40

0

40

80

120

160

lattice

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

y

-160

-120

-80

-40

0

40

80

120

160

17/19

± pattern

see also Felder-Silvotti 1989

exactlattice

agreement also in the 
overall scaling



⟨𝑇DD 𝑧, ̅𝑧 𝜎 𝑧%, ̅𝑧% 𝜎 𝑧", ̅𝑧" ⟩ 𝑧% = 0, 𝑧" =
P/%
"

𝜎!

𝜎"

spin system, MC

𝜏 = 𝑒TU/; (regular hex lattice)

Conformal Ward identities – II. spin variable

• Constructed 𝑇'( can be readily mapped to spin operator via loop expansion

18/19

hopping
𝑠$𝑠$. ?;

𝜀-𝜀-2 3.
𝑇. ∼

exact

hopping
1
2
̅𝜉$ 1 − 𝛾B𝑒;

B 𝜉$. ?;

𝜀-𝜀-2 3.mass op

Good agreement (including the overall scaling)



𝐿 = 96

𝜏 = 1.2𝑒EFG/I

Normalization between
𝑠$ and 𝜎$ is determined from 
geometrical quantities and diverging part;
working quite nicely

• Get a solid theoretical understanding of the shift parameter and diverging part.
The two seem related; both are relevant to the normalization of 𝜎D operator.

• For nonregular lattices:

• We constructed a lattice EM tensor in the Ising CFT 

• Map it further to the triangular lattice by taking the dual.

Summary

- Extra mixing of 𝑇 and 0𝑇 can be understood as the geometrical staggered shift

- Not all lattice operator works consistently as the EM tensor:
By canceling the diverging part of 𝑇FQR,, the nonuniversal finite part disappears.

- for arbitrary affine parameter, on hexagonal lattice
- both in spin and fermion variables
- including overall normalization and one-point function

Outlook

19/19• EM tensor of the Ising CFT on 𝑆".



Thank you!



Antisymmetrization removes 𝜕𝜀, 𝜕̅𝜀, leaving 𝑇, 0𝑇

original

after 
antisymmetrization

MC exact
⟨𝑇DD 𝑥 𝑇DD 0 ⟩

Necessity of antisymmetrization in Kadanoff’s operator 



• Wilson-Majorana fermion

𝑍4/0% ≡ E 𝑑𝜉 	𝑒56!"#$	
𝜈 = 1, 2, 3, 4
PP, PA, AA, AP in 𝜎%, 𝜎"

𝑆4/0% ≡
1
2H

-

̅𝜉-𝜉- − H
-∈9,.

𝜅.	 ̅𝜉-𝑃 𝑒. 𝜉-2 3.

• With the classical small-𝑎 expansion:

𝑆4/0% → 𝑆4"#$%

𝑆4"#$% =
1
4𝜋

E𝑑+𝑥 L𝜓	𝛾:𝜕:𝜓

• 𝑍4/0% 𝜏*, 𝜏+; 𝐿  approaches 𝑍4"#$% 𝜏*, 𝜏+  as 𝐿 → ∞ with a diverging const:

𝑍4/0% 𝜏*, 𝜏+; 𝐿 = 𝒩 𝜏*, 𝜏+; 𝐿 	𝑍4"#$% 𝜏*, 𝜏+; 𝐿 𝜏 = 1.2𝑒5TU/]

=
1
4𝜋E𝑑

+𝑧 𝜂𝜕̅𝜂 + T𝜂𝜕 T𝜂

𝜂 𝑧 = 𝜓* 𝑥 , T𝜂 ̅𝑧 = −𝑖𝜓+ 𝑥

𝛾% =
0 1
1 0 , 𝛾" =

0 −𝑖
𝑖 0

𝑃 𝑒; ≡
1
2
1 − 𝑒;<𝛾< = 1

−𝑒G<" 1 −𝑒PG<"

𝜉 𝑥 = 𝑠/(2𝜋)	𝜓 𝑥

̅𝜉 ≡ 𝜉_𝒞, 𝒞 = 0 1
−1 0

Wolff 2020
Brower-Owen 2023

𝑠 ≡
∑; ℓ;∗

2


