Energy-momentum tensor in the 2D Ising CFT in full modular space

Nobuyuki Matsumoto

Boston University

BOSTON JNIVERSIT

Lattice2024 Liverpool, 07.30.2024

Based on work in collaboration with Richard C. Brower (BU), George T. Fleming (Fermilab), J. Y. Lin (Carnegie Melon)

Introduction

- Lattice field theories on curved spacetimes open up new branches of theoretical study
	- Nonperturbative calculation on curved space

→ *vacuum structure under curvature, BH background, …?*

- Infinite volume calculations for CFT w/ Riemann projection or radial quantization

→ *infinite volume scattering from lattice, …?*

Difficulty: We need to give up rectangular lattice and its symmetries; discretization of curved manifolds often done w/ simplicial decomposition **Brower-Cheng-Weinberg-Fleming-Gasbarro-Raben-Tan 2018**

e.g., Regge 1961, Friedberg-Lee 1984

• Half step forward:

Flat space but with stressed metrics "affine transformation" **e.g., Owen-Brower 2023Adjusting couplings in 3D Ising: George's poster**

→ *may be possible to reconstruct theory on curved space from tangential info* → **Rich's next talk**

- An essential quantity in any of these directions: energy-momentum tensor
	- measures the linear response to metric perturbation by definition.
	- In 2D CFT, it is related to the background geometry transparently

 L_0 changes τ on T^2 , $\left\langle T_\mu ^\mu \right\rangle = -\frac{c}{12} R$ (trace anomaly)

- Even on regular lattices, its definition requires care on discretized spacetime; more for simplicial lattices as translation is even more screwed up 2/19

This talk

- Thoroughly study EM tensor of the 2D Ising CFT on T^2 :
	- w/ arbitrary modulus τ , on hexagonal lattice (dual to simplicial, triangular lattice)
	- Both in spin and Majorana variables
	- Including overall normalization and one-point function
- Previous work on lattice: **Kadanoff-Ceva 1970**
	- On rectangular lattice, before the developments of CFT (cf. **BPZ 1984**)
	- Require antisymmetrization from the original expression to remove contribution from the descendants of ϵ
- Nontrivial points on non-regular lattice

 $\tau \equiv \tau_1 + i \tau_2$: modulus

- Naive $\tau_{1,2}$ derivatives do not give a suitable EM tensor operator
- Free Majorana fermion but nontrivial mixing of operators occurs; can be fully described geometrically by the relative shift between the e/o lattices
- Not all lattice operator works consistently as the EM tensor (under different BC)

This talk mainly focuses on these technicalities

Review1: 2D Ising CFT on T^2

• Ising CFT partition function as free fermion theory:

Onsager 1944, Schultz-Mattis-Lieb 1964, Itzykson 1982, BPZ 1984, Francesco-Saleur-Zuber 1987

$$
L_0 = \sum_{k \in \mathbb{Z}_{>0} - 1/2} k a_{-k} a_k \qquad \text{(ABC=NS)} \qquad \qquad \begin{cases} a_k : \text{fermion operator for the Fourier mode } k \\ a_p, a_q \end{cases}
$$

$$
L_0 = \sum_{k \in \mathbb{Z}_{>0}} k a_{-k} a_k + \frac{1}{16} \qquad \text{(PBC=R)} \qquad \qquad \begin{cases} a_p, a_q \end{cases} = \delta_{p+q}
$$

$$
Z_{\text{cont}} \equiv \text{Tr}_{\text{NS+R}} \left[P_{\text{GSO}} q^{L_0 - \frac{1}{48}} \bar{q}^{\bar{L}_0 - \frac{1}{48}} \right]
$$
\n
$$
= \frac{1}{2} \left\{ \text{Tr}_{\text{R}} \left[(-1)^F q^{L_0 - \frac{1}{48}} \bar{q}^{\bar{L}_0 - \frac{1}{48}} \right] + \text{Tr}_{\text{NS}} \left[q^{L_0 - \frac{1}{48}} \bar{q}^{\bar{L}_0 - \frac{1}{48}} \right] + \text{Tr}_{\text{NS}} \left[q^{L_0 - \frac{1}{48}} \bar{q}^{\bar{L}_0 - \frac{1}{48}} \right] \right\}
$$
\n
$$
= \frac{1}{2} \left\{ Z_{\text{v=1}}^{\text{cont}} + Z_{\text{v=2}}^{\text{cont}} + Z_{\text{v=3}}^{\text{cont}} + Z_{\text{v=4}}^{\text{cont}} \right\}
$$
\n
$$
V = 1, 2, 3, 4 \Leftrightarrow \text{PP, PA, AA, AP in (space, time)}
$$

- $\frac{1}{\infty}$: zero modes
- $T_{\alpha\beta}$ changes τ by the effect of L_0

Eguchi-Ooguri 1986

 $\langle T \rangle = 2 \pi i \partial_{\tau} \ln Z_{\text{cont}}(\tau, \bar{\tau})$

Review2: 2D Ising model on hexagonal lattice

• Parametrization of the hexagonal lattice

 $\tau_{1,2}$ derivatives on the lattice $(\tau = \tau_1 + i \tau_2)$

 $T_{xx}\rangle_v = 2\pi \partial_{\tau_2} \ln Z_v^{\text{cont}}(\tau_1, \tau_2)$ $\approx 2\pi \partial_{\tau_2} \ln \left\{ \mathcal{N}^{-1}(\tau_1, \tau_2; L) Z_{\nu}^{\text{lat}}(\tau_1, \tau_2; L) \right\}$ Utilize $\tau_{1,2}$ derivatives?

• Fermion bilinear part:

$$
\partial_{\tau_2} \ln Z_{\nu}^{\rm lat} = - \sum_{M} \left\langle \left(\frac{\partial \kappa_M}{\partial \tau_2} \frac{\partial S_{\nu}^{\rm lat}}{\partial \kappa_M} + \frac{\partial e_M^{\alpha}}{\partial \tau_2} \frac{\partial S_{\nu}^{\rm lat}}{\partial e_M^{\alpha}} \right) \right\rangle_{\nu}^{\rm lat}
$$

$$
\frac{\partial \kappa_{M}}{\partial \tau_{2}} \frac{\partial S_{\nu}^{\text{lat}}}{\partial \kappa_{M}} + \frac{\partial e_{M}^{\alpha}}{\partial \tau_{2}} \frac{\partial S_{\nu}^{\text{lat}}}{\partial e_{M}^{\alpha}} = \frac{\partial \kappa_{M}}{\partial \tau_{2}} \sum_{x \in e} \frac{1}{2} \bar{\xi}_{x} (1 - \gamma \cdot e_{M}) \, \xi_{x + \widehat{M}} + \sum_{M} \frac{\partial e_{M}^{\alpha}}{\partial \tau_{2}} \sum_{x \in e} \bar{\xi}_{x} \gamma_{\alpha} \xi_{x + \widehat{M}}
$$
\nNot easy to map to the spin system

• Constant part

 $\tau_{1,2}$ dependence on $\mathcal{N}(\tau_1, \tau_2; L)$ remains in the $L \rightarrow \infty$ limit, that would be only canceled by a divergent part of the fermion bilinear operator

Usually, the continuum path integral is regularized with zeta function regularization, which does so cleanly w/o such $\tau_{1,2}$ dependence.

• Defining a local operator from a global discussion is ambiguous (cf. need of antisymmetrization for **Kadanoff-Ceva 1970**)

We rather take a conventional lattice strategy 6/19

Coming back to Symanzik-type construction

• We consider the lattice operator:

Consider the lattice operator:

\n
$$
\hat{T}_{x,M}^{\text{lat}} \equiv \frac{1}{2} \bar{\xi}_x \left(1 - \gamma_\mu e_M^\mu \right) \xi_{x+\hat{M}} - \frac{1}{4} \left(\bar{\xi}_x \xi_x + \bar{\xi}_{x+\hat{M}} \xi_{x+\hat{M}} \right)
$$
\n
$$
T_M \sim \underbrace{\int_{\text{mass op } \xi_x + \hat{M}}^{\text{lat}}} \xi_x \left(1 - \gamma_\mu e_M^\mu \right) \xi_{x+\hat{M}}
$$
\n
$$
T_{x,M}^{\text{lat}} \equiv \frac{2\pi}{s} \frac{1}{|\ell_M^*|} \hat{T}_{x,M}^{\text{lat}}
$$
\n
$$
\text{easily mappable to the spin system } \left(s \equiv \frac{\sum_M |\ell_M^*|}{2} \text{ semiperimeter} \right)
$$
\n
$$
\text{supplies dimension}
$$

- Mixing of T, \overline{T} (and 1) can be resolved by the three projected components T_M
- To calculate the mixing matrix, naively, one may use:

$$
\xi_{x+\widehat{M}} = \xi_x + |\ell_M^*| e_M^{\nu} \partial_{\nu} \xi_x + O(a^2),
$$

which implies:

$$
\hat{T}_{x,M}^{\text{lat}} = -|e_M^*| \cdot e_M^{\mu} e_M^{\nu} \frac{1}{2} \bar{\xi}_x \gamma_{\mu} \partial_{\nu} \xi_x \cdot (1 + O(a))
$$
\nprojected EM tensor: $e_M^{\alpha} e_M^{\beta} T_{\alpha \beta}$

However, "?" turns out to be negative for nonregular lattices

hopping

 $\mu \rightarrow$

Deviation from the prediction of classical expansion

- Contribution from 1 dropped by taking connected part
- Mixing of T and \bar{T} differs from the prediction from the classical expansion:

Deviation remains in the continuum limit.

Source of deviation

Lattice translation holds only for e/o sublattices, which cannot constrain their relative position to the classical prediction:

This allows $\xi_{x+\widehat{M}}$ to float and redeclare its location in the observables:

$$
\begin{aligned}\n\xi_{x+\widehat{M}} &= \xi_x + \widetilde{\ell}_M^{*v} \partial_v \xi_x + O(a^2) \\
&= \xi_x + \left| \widetilde{\ell}_M^{*v} \right| \widetilde{e}_M^v \partial_v \xi_x + O(a^2) \\
&\qquad \qquad \left(\begin{array}{c} (\widetilde{e}_M^v) \equiv [\cos(\alpha_M + \delta \alpha_M), \sin(\alpha_M + \delta \alpha_M)]^T \\ x \in e \end{array} \right)\n\end{aligned}
$$

With such possibility: different from original ℓ_M^*

$$
\hat{T}_{x,M}^{\text{lat}} = \frac{1}{2} \bar{\xi}_x \left(1 - \gamma_\mu e_M^\mu \right) \xi_{x+\hat{M}} - \frac{1}{4} \left(\bar{\xi}_x \xi_x + \bar{\xi}_{x+\hat{M}} \xi_{x+\hat{M}} \right) \propto e_M^\alpha \tilde{e}_M^\beta T_{\alpha\beta}
$$

two different vectors; one known, one unknown

9/19

Determining the shift params

• Fit an IR part of the correlators $\left\langle T_M^{\rm lat}(x) T_N^{\rm lat}(0) \right\rangle_{\nu, {\rm conn}}$

Shift params converges to a universal value as $L \to \infty$ irresp of ν

suggesting the existence of a consistent continuum limit

 $\tilde{\ell}_A^*$ ∗

Confirming the correction

Mixing with 1: One point function

- Finite volume (torus) \rightarrow $\langle T \rangle_{v} \neq 0$ in the continuum
- $\langle T_M^{\rm lat}\rangle_{_{\cal V}}$ further has a divergent part on the lattice because of the Wilson term:

$$
\overline{\Psi}\Psi \cdot a\int_{x} \overline{\Psi} \delta^{2} \Psi = \mathcal{O}(1/a)
$$

 $\overline{\psi}\psi$ wrap around propagationWhen properly regularized, $(1/2)\langle (\bar{\psi}\psi)_{\text{reg}}\rangle_{\psi\neq 1} = \langle \varepsilon\rangle_{\psi\neq 1} = 0$
**Ferdinand-Fisher 1969,
Francesco-Saleur-Zuber 19 Ferdinand-Fisher 1969, Francesco-Saleur-Zuber 1987** This contribution dropped here for simplification

Divergent part again converges to a universal value as $L \rightarrow \infty$ irresp of v:

Mixing with 1: One point function

- Finite volume (torus) \rightarrow $\langle T \rangle_{v} \neq 0$ in the continuum
- $\langle T_M^{\rm lat}\rangle_{_{\cal V}}$ further has a divergent part on the lattice because of the Wilson term:

$$
\overline{\Psi}\Psi \cdot a\int_{x} \overline{\Psi} \delta^{2} \Psi = \mathcal{O}(1/a)
$$

 $\overline{\psi}\psi$ propagation wrapping aroundWhen properly regularized, $(1/2)\langle (\bar{\psi}\psi)_{\text{reg}}\rangle_{\psi\neq 1} = \langle \varepsilon\rangle_{\psi\neq 1} = 0$
**Ferdinand-Fisher 1969,
Francesco-Saleur-Zuber 19 Ferdinand-Fisher 1969, Francesco-Saleur-Zuber 1987** This contribution dropped here for simplification

Divergent part again converges to a universal value as $L \rightarrow \infty$ irresp of v:

Nonuniversal finite part of $\langle T_M^{\rm lat} \rangle$ $\boldsymbol{\nu}$

- One might regularize T_M^{lat} by subtracting the divergent part: $T_M^{\text{lat},R} \equiv T_M^{\text{lat}} \frac{C_M}{a}$ \overline{a}
- However, $\braket{T_M^{\text{lat},R}}_{\nu}$ does not approach the continuum value $\left\langle e_M^\alpha \tilde{e}_M^\beta T_{\alpha\beta}\right\rangle$ $\boldsymbol{\nu}$ and the deviation differs by v :

 0.006 • This finite shift may *not* be regarded as a finite part of the renormalization as it depends on the BC ν .

 $T_M^{{\small \textsf{lat}}, R}$ themselves do not behave consistently as the projected EM tensor operator when including one-point function.

 $1/L$

Consistent EM tensor operator

• Nontrivial point:

By constructing $T_{\alpha\beta}^{\mathrm{lat}}$ as a linear combination of T_M^{lat} s.t. the divergent part cancels, the finite part likely also cancels for every v .

i.e.,

$$
T_M^{\text{lat}} \simeq \cos(2\alpha_M + \delta\alpha_M)T_{xx} + \sin(2\alpha_M + \delta\alpha_M)\tilde{T}_{xy} + \frac{A_M}{a} + B_{M,\nu} + O(a)
$$

$$
T_{xx}^{\text{lat}} \equiv \sum_{M} C_{xx,M} T_M^{\text{lat}} \simeq 1 \cdot T_{xx} + 0 \cdot T_{xy} + \frac{0}{a} + \sum_{M} C_{xx,M} B_{M,\nu} + O(a)
$$

by the choice of $C_{xx,M}$, $C_{xy,M}$ can exist in principle but cancels

$$
T_{xy}^{\text{lat}} \equiv \sum_{M} C_{xy,M} T_{M}^{\text{lat}} \simeq 0 \cdot T_{xx} + 1 \cdot T_{xy} + \frac{0}{a} + \sum_{M} C_{xy,M} B_{M,y} + O(a)
$$

 $T^{\mathrm{lat}}_{\alpha\beta}$ uniquely constructed from T^{lat}_M

Numerics

Determining the shift params (revisited)

Alternative scheme for shift parameters: fix the 1pt functions

Fitting all v simultaneously \rightarrow clean a^2 scaling

Gives more precise values, two schemes in a tolerable agreement:

We use the values from the 1pt scheme below

16/19 (errors fully systematic)

Conformal Ward identities – I. fermion variable

• $\langle T_{xx}(z,\bar{z})\varepsilon(z_1,\bar{z_1})\varepsilon(z_2,\bar{z_2})\rangle_{3,c}$ with fermionic variables $z_1 = 0, z_2 = 1/3, L = 144$

conformal Ward identity on torus:

 \sim \sim

Eguchi-Ooguri 1986 see also Felder-Silvotti 1989

Full contour plot

17/19 *agreement also in the overall scaling*

Conformal Ward identities – II. spin variable

Constructed $T_{\alpha\beta}$ can be readily mapped to spin operator via loop expansion

$$
\langle T_{xx}(z,\bar{z})\sigma(z_1,\bar{z}_1)\sigma(z_2,\bar{z}_2)\rangle \ \left(z_1=0,z_2=\frac{(\tau+1)}{2}\right)\ \tau=e^{\pi i/3} \ (\text{regular hex lattice})
$$

Summary

- We constructed a lattice EM tensor in the Ising CFT
	- for arbitrary affine parameter, on hexagonal lattice
	- both in spin and fermion variables
	- including overall normalization and one-point function
- For nonregular lattices:
	- Extra mixing of T and \bar{T} can be understood as the geometrical staggered shift
	- Not all lattice operator works consistently as the EM tensor: By canceling the diverging part of T_M^{lat} , the nonuniversal finite part disappears.

Outlook

- Map it further to the triangular lattice by taking the dual.
- Get a solid theoretical understanding of the shift parameter and diverging part. The two seem related; both are relevant to the normalization of σ_x operator.

Thank you!

Antisymmetrization removes $\partial \varepsilon$, $\bar{\partial} \varepsilon$, leaving T, \bar{T}

• Wilson-Majorana fermion **Brower- Owen 2023**
\n
$$
Z_{\nu}^{\text{lat}} \equiv \int (d\xi) e^{-S_{\nu}^{\text{lat}}}
$$
\n
$$
S_{\nu}^{\text{lat}} \equiv \frac{1}{2} \sum_{x} \bar{\xi}_{x} \xi_{x} - \sum_{x \in e, M} \kappa_{M} \bar{\xi}_{x} P(e_{M}) \xi_{x+\hat{M}}
$$
\n
$$
P(\xi_{\mu}) = \frac{1}{2} (1 - e_{M}^{\alpha} \gamma_{\alpha}) = \begin{bmatrix} 1 \\ -e^{i\alpha_{M}} \end{bmatrix} [1 - e^{-i\alpha_{M}}]
$$
\n
$$
Y_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
$$
\n
$$
\bar{\xi} \equiv \xi^{T} C, \quad C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$

• $Z_{\nu}^{\text{lat}}(\tau_1, \tau_2; L)$ approaches $Z_{\nu}^{\text{cont}}(\tau_1, \tau_2)$ as $L \to \infty$ with a diverging const:

$$
Z_{\nu}^{\text{lat}}(\tau_{1},\tau_{2};L) = \mathcal{N}(\tau_{1},\tau_{2};L) Z_{\nu}^{\text{cont}}(\tau_{1},\tau_{2};L)
$$
\n
$$
\begin{array}{|l|}\n\hline\n\text{#} \ v = 4 \\
\hline\n\text{#} \ v = 4 \\
\
$$