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Imaginary time correlation function and spectral function
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# Extracting spectral functions is an ill-posed inverse problem.
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Spectral function extracted from lattice QCD data

e Previous works (not inclusive)

v' Maximum entropy method (MEM) v Backus Gilbert method
[M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. [B. B. Brandt, A. Francis, H. B. Meyer, and D. Robaina,
Nucl. Phys. 46 (2001) 459-508] Phys. Rev. D 92, 094510 (2015)]

v Stocha§tic method v Sparse modeling (SpM)
[H.-T. Ding, et al., Phys. Rev. D 97, 094503 (2018)] [E. Itou, Y. Nagai, J. High Energ. Phys. 2020, 7 (2020)]

It is important to check the spectral function with each other in various ways
and to properly estimate the systematic error.

* Our presentation @ Lattice2023
» We checked the applicability of SpM by performing mock data tests, which had never been

done before for the calculation of spectral functions using SpM.
» We tried to extract spectral functions from mean values of charmonium correlation

functions in the vector channel obtained from lattice QCD.
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Update from our previous study

e Mock data test

» Using correlation functions reconstructed from mock charmonium specitral functions.

» Manually adding noises corresponding to the errors to the correlation functions and preparing

several of them.

L]

The mean value and covariance matrix of the correlation functions
can be considered as in actual lattice calculations.

* Spectral function from lattice QCD data

» Extracting the spectral functions in the pseudoscalar channel in addition to the vector channel.

» Estimating errors of the spectral functions by Jackknife analyses.
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Sparse modeling

« Extracting spectral functions by using SpM has been proposed in condensed

matter physics.

[H. Shinaoka, J. Otsuki, M. Ohzeki, K. Yoshimi, Phys. Rev. B 96 (2017) 035147]
[J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302]

- Fitting with different regularization in MEM (we do not use default models.)

* The ranks of the spectral function and the correlation function are reduced by

dropping the contribution of small singular values s;.

K=USV" wusp p'=V'p G

U'G

» In our study, the components of p’ and G’
corresponding to small singular values
satisfied with s;/s1 < 10~'° dropped.
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An example of singular values of K
used in our study




Sparse modeling

» Cost function: x*term + L1 regularization term (LASSO form problem)
1

F(p') = 5(G' = Sp')* + All/lx L1 norm: [|'[[1 = > |}
l

A is a positive hyperparameter.

* This optimization problem is solved iteratively by alternating direction method

of multipliers (ADMM) [S. Boyd, et al., Foundations and Trends R in Machine Learning 3, 1 (2011)]

» The problem is solved at various A and the most likely spectral function p can be found at
the optimal A.

» In our study, estimation of the optimal A 1s same as the previous study.
[E. ltou, Y. Nagai, J. High Energ. Phys. 2020, 7 (2020)]

See backup slides for detail.
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Mock data test

* Mock spectral functions: [H.-T. Ding, et al., Phys. Rev. D 97, 094503 (2018)]

> T < T, resonance peak (J/y meson mass) + free Wilson spectral function

» T > T, transport peak + broader resonance peak + free Wilson spectral function
» The range of ®: 0 < wa < 4(a: lattice spacing), # of » points: N, =8001

T < T, T > T. Free Wilson slpectral function
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Mock data test

e The central values of correlation function G(t)

G(t) = /dwp(w)K(w, T)
> # of T points: N, = 48, 64, 96
» Errors of G(t) are generated by gaussian random numbers
» Variance:o0(7) =€-7-G(7)
> Consider three types of noise level: € = 1072, 5 x 1072, 107"
> Prepare G(t) with errors (N,,,,=300)

= calculate covariance matrix

Cij =
J
Nconf conf — 1
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Results of mock data test (T<T,, noise level =5 X 10-3)

N, =48 N. =64 N.=96
0.81 0.8¢ 0.8
—Input —Input —Input
— Qutput — Qutput
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0.0 - ] - ] 0.0 - - - - . - . : .
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wa wa wa

* The resonance peak becomes sharper as /V, increases.

 Similar results are obtained for other noise levels.
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Results of mock data test (T<T., N =96)

Noise level ¢ =102
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 The resonance peak becomes sharper as noise level ¢ decreases.

« Similar results are obtained for other V..
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Results of mock data test (T>T,, noise level e=10-?)

N_=48 N_=64 N_=96
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— Output —— Output —— Output
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* The resonance peak becomes sharper as /V, increases.
* The transport peaks are not reproduced.

e Similar results are obtained for other noise levels.
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Results of mock data test (T>T,, N _=48)

Noise level ¢=10-2 =5 X103 =107
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 The resonance peak becomes sharper as noise level ¢ decreases.

« Similar results are obtained for other V..
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Lattice QCD data

Standard plaquette gauge + O(a)-improved Wilson quark action

In the quenched approximation

Lattice spacing: a = 0.010fm, ™' ~ 18.97 GeV

Spatial and temporal extents: N, = 128, N, = 96, 48 for T'/1. = 0.73, 1.46

Charmonium correlation functions in pseudoscalar channel and vector channel

# of conf.: 234 (N, = 96), 461 (N, = 48)
[H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, W. Soeldner, Phys. Rev. D 86, 014509 (2012)]

Statistical errors: Jackknife analyses
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Results from lattice QCD data

(T=0.73T.)

* Broad peak about 4GeV.

> Results of MEM: 3.48GeV (vector), 3.31GeV (pseudoscalar) [H-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz,
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Results from lattice QCD data (T=1.46T,)

« The resonance peaks become much broader and are shifted higher energy (~5GeV).

» Results of MEM: 4.7GeV (vector), 4.1GeV (pseudoscalar)  [H-T.Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz,
W. Soeldner, Phys. Rev. D 86, 014509 (2012)]

 The transport peaks are not appeared.
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Shaded areas: statistical errors, solid lines: mean values,
* horizontal error bars: statistical uncertainties of the peak location p-15/16 ®



Summary

e Sparse modeling (SpM) is a useful method for obtaining a reasonable solution to an ill-

posed 1inverse problem such as the extraction of spectral functions.

We applied SpM to extract spectral functions from charmonium correlation functions.

Mock data test:

» The longer N, or the smaller the noise level g, the better the spectral function can be

reproduced.

Results from lattice QCD data:
» Although the position and width of the peaks are not the same as the MEM results, the

qualitative behavior is similar. = Reflecting model-independent properties.

To estimate the transport peak, assumptions beyond SpM, such as the shape of the

transport peak, might be needed.
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Sparse modeling in our study

1. Calculate the covariance matrix C and carry out the Cholesky decomposition:
C~l=w'w

2. Transform G and Kby W: Gw = WG, Ky = WK

3. Carry out the singular value decomposition of Ky: Ky = USV*

S is an NTXNw diagonal matrix. U and V are NTX Nt and Nw X Nw orthogonal matrices, respectively.

NT and Nw are the # of points of G(T) and p(w), respectively.

4. Transform the basis of Gy and p by Ut and Vt, respectively:
P =V'p, Gy, =U'Gw



Sparse modeling in our study

5. The components of py’ and Gy’ corresponding to small singular values
satisfied with s;/s1 < 107" are dropped.

* At the same time, the sizes of U, S and V are reduced.
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Sparse modeling in our study

6. The cost function F(p’) consists of the square error and the L1 regularization
term. 1
F(pw) = 5(Gw = Spw)” + Allpw |l = X" (pw) + Allow 1
7. Solve the optimization problem at various A by using ADMM and find the

most likely spectral function p.

~ An optimal value Ag;: @
The value of A at the kink position of x2. E
(Estimation of A, is same as the
previous study.)

2
[E. Itou, Y. Nagai, J. High Energ. fN)/x
Phys. 2020, 7 (2020)]
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f(A): aline in log-log scale



Searching A,

1. Fix arange of A, [A ., A, .l
2. Calculate x2(p’) for each A by using ADMM

iterations X

v # of iterations: 10000

3. Obtain a function f(A) in log-log scale by

connecting fQA, ;) with fQA__)
4. Calculate the ratio f(A)/x2 J
v' The A located at the peak position of FO)/x2

f(A)/x? corresponds to Ay




Mock spectral function
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Spectral function Parameters w; =0.145 | Ay =0.01
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Normalization

e Kernel

cosh [w (7' — %)]
sinh (%)

K(w,7) =

4 Diverges at w =0.

 Correlation function has lattice cutoff effects at small distances.

» y K(w,T) cosh |w (T — 57)]

K(w,T;70) = K (w, 1) B cosh [w (7'0 — L)]

ﬁ(w; 7‘0) = p(w)K(w, 7‘0) 70 : reference 1imaginary time

We used the correlation function data from t,/a to N,/2 in our analysis.
We chose 1y,/a = 1 in mock data tests and 1y/a = 4 for LQCD data.



