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• Complexify , evolve statistical system in fictitious time direction .x → z = x + iy τ

• Obtain target theory  in equilibrium limit .e−S(z) τ → ∞

The complex Langevin equation
Klauder ’83; Parisi ‘83

Complex Langevin equation

dz
dτ

= −
∂S(z)

∂z
+ η(τ)
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B𝒪(z)(Y) = ⟨Θ (Y − |z |) L𝒪(z)⟩

• Formal argument for correctness relies on fast decay of , such that one can 
integrate by parts without appearance of boundary terms.

P𝒪

• Can measure boundary terms: 

• Can infer incorrect solutions from non-vanishing boundary terms.

• Cannot infer correct solutions from vanishing boundary terms.

Boundary terms
Aarts et al. ’11; Scherzer et al. ‘19
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• Integration paths connecting zeros of  .ρ(z)

• Example:  .ρ(z) = e− z4
4

• Three independent cycles,  is the relevant one.γ1

• Vanishing boundary terms only imply that result is 
linear combination of integration cycles:

�1

�2

�3 �4

�5 �6

Integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi
Salcedo, Seiler ’19
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see also Witten ‘11
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• May introduce kernel into Langevin equation:

• Example:  ,   ,   .S =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

• Kernel can restore correct convergence.

Complex Langevin evolution with a kernel

∂z
∂τ

= −K
∂S(z)

∂z
+ K η(τ)

Okamoto et al. ’89
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• Recall:

•  is the real integration cycle.γ1

• Kernel can favor certain cycles.

• Only proven for a single degree of freedom.

Kernels and integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi

7

see also Salcedo ’93
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• Consider the more general model

.S(z1, z2) =
λ
4

(z4
1 + z4

2+az2
1z2

2)

• Number of independent cycles depends on .a

• The -symmetric point  is “critical”.O(2) a = 2

Number of independent cycles

9
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• CL promising approach for systems with a complex-action problem.

• Major drawbacks: Runaways (adaptive step size) and wrong convergence. 

• Wrong convergence can in principle be fixed by kernels.
• How to construct them?
• How to verify convergence?

• Outlook: 
• Understand relevance of integration cycles in realistic theories.
• (Heavy-dense) QCD with kernels.
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Effect of a kernel in 1D



 

Effect of a kernel in 2D



• Example: . 

• Complexification can introduce runaway 
trajectories leading to diverging simulation. 

• Overcome via adaptive step-size control.

S(z) =
z4

4

z → z −
∂S(z)

∂z
ε + εηz → z −

∂S(z)
∂z

ε + εη

Runaways

Aarts et al. ’10

z → z −
∂S(z)

∂z
ε + εη
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S(z1, z2) =
λ
4

(z4
1 + z4

2+az2
1z2

2)
a = 0 a = 1


