LATTICE 2024 - 29/07/2024

Kernels and integration cycles in complex Langevin simulations

Michael Mandl with Michael W. Hansen, Dénes Sexty and Erhard Seiler

EWF Austrian
Science Fund

LATTICE 2024 - 29/07/2024

EWF Austrian
Science Fund

Kernels and integration cycles in complex Langevin simulations

Michael Mandl with Michael W. Hansen, Dénes Sexty and Erhard Seiler Wednesday @ 11:55 Tuesday @ 15:05

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem:

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem: $\langle O \rangle = \int dx O(x) \rho(x)$

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem: $\langle \mathcal{O} \rangle = \int dx \mathcal{O}(x) \rho(x)$

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem: $\langle \mathcal{O} \rangle = \int dx \mathcal{O}(x) \rho(x)$ $\rho(x) \propto e^{-S(x)} \notin \mathbb{R}$ \implies probabilistic interpretation lost.

• Complexify $x \to z = x + iy$, evolve statistical system in fictitious time direction τ .

Klauder '83; Parisi '83

• Complexify $x \to z = x + iy$, evolve statistical system in fictitious time direction τ .

Complex Langevin equation

$$
= -\frac{\partial S(z)}{\partial z} + \eta(\tau)
$$

Klauder '83; Parisi '83

• Complexify $x \to z = x + iy$, evolve statistical system in fictitious time direction τ .

• Complexify $x \to z = x + iy$, evolve statistical system in fictitious time direction τ . Complex Langevin equation

The complex Langevin equation

Klauder '83; Parisi '83

Klauder '83; Parisi '83

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Complex Langevin simulations can give wrong results despite converging properly.

• Correct convergence only for $|l| \leq 2$. Okamoto et al. '89

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

- Correct convergence only for $|l| \leq 2$. Okamoto et al. '89
- In general, we do not know if results are correct.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

- Correct convergence only for $|l| \leq 2$. Okamoto et al. '89
- In general, we do not know if results are correct.
- Want: Correctness criterion.

• Example:
$$
S(z) = \frac{\lambda}{4} z^4
$$
, $\lambda = e^{\frac{i\pi l}{6}}$.

- Correct convergence only for $|l| \leq 2$. Okamoto et al. '89
- In general, we do not know if results are correct.
- Want: Correctness criterion.

Boundary terms

• Formal argument for correctness relies on fast decay of $P\mathcal{O}$, such that one can integrate by parts without appearance of boundary terms.

Boundary terms

Aarts et al. '11; Scherzer et al. '19

$$
B_{\mathcal{O}(z)}(Y) = \left\{ \Theta\left(Y - |z|\right) L\mathcal{O}(z) \right\}
$$

- Formal argument for correctness relies on fast decay of $P\mathcal{O}$, such that one can integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

Aarts et al. '11; Scherzer et al. '19

Boundary terms x \blacktriangle $\boldsymbol{\mathsf{X}}$ $\frac{1}{3}x$ exact $\boldsymbol{\mathsf{X}}$ 2nd Riemann sheet $\otimes 1$ $\mathbf{8}^2$ \blacktriangle $\vec{\bm{\Theta}}$ σ^3 \times \blacktriangle

 0.6

 0.4

 0.2

 0.0

4

$$
B_{\mathcal{O}(z)}(Y) = \left\{ \Theta\left(Y - |z|\right) L\mathcal{O}(z) \right\}
$$

- Formal argument for correctness relies on fast decay of $P\mathcal{O}$, such that one can integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

Aarts et al. '11; Scherzer et al. '19

$$
B_{\mathcal{O}(z)}(Y) = \left\langle \Theta\left(Y - |z|\right) L\mathcal{O}(z)\right\rangle
$$

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

• Can infer incorrect solutions from non-vanishing boundary terms.

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of $P\mathcal{O}$, such that one can

$$
B_{\mathcal{O}(z)}(Y) = \left\langle \Theta\left(Y - |z|\right) L\mathcal{O}(z)\right\rangle
$$

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

- Can infer incorrect solutions from non-vanishing boundary terms.
- Cannot infer correct solutions from vanishing boundary terms.

Boundary terms

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of $P\mathcal{O}$, such that one can

• Integration paths connecting zeros of *ρ*(*z*) .

Integration cycles

see also Witten '11

- Integration paths connecting zeros of *ρ*(*z*) .
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$. 4

see also Witten '11

- Integration paths connecting zeros of *ρ*(*z*) .
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$. 4
- Three independent cycles, γ_1 is the relevant one.

- Integration paths connecting zeros of *ρ*(*z*) .
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$. 4
- Three independent cycles, γ_1 is the relevant one.
- Vanishing boundary terms only imply that result is linear combination of integration cycles:

$$
\langle \mathcal{O} \rangle_{\text{CL}} = \sum_{i=1}^{3} a_i \langle \mathcal{O} \rangle_{\gamma_i}
$$

Complex Langevin evolution with a kernel

• May introduce kernel into Langevin equation: Parisi, Wu '81; Söderberg '88

$$
\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)
$$

$$
\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)
$$

• Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$.

$$
\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)
$$

• Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$.

$$
\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)
$$

• Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$.

- Example: $S = \frac{1}{4}z^4$, $\lambda = e^{\frac{3\pi}{6}}$, $K = e^{-\frac{3\pi}{24}}$. *λ* 4 z^4 , $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$ 24
- Kernel can restore correct convergence. Okamoto et al. '89

$$
\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K \eta(\tau)}
$$

7

7

7

7

7

7

7

7

- Consider $S(z_1, z_2) = \frac{1}{4}(z_1^2 + z_2^2)^2$. *λ* 4 $(z_1^2 + z_2^2)$ 2
- $e^{-S(z_1,z_2)}$ has 16 zeros but there are only 2 independent integration cycles.

• Consider the more general model

$$
S(z_1, z_2) = \frac{\lambda}{4} (z_1^4 + z_2^4 + a z_1^2 z_2^2).
$$

• Consider the more general model

$$
S(z_1, z_2) = \frac{\lambda}{4} (z_1^4 + z_2^4 + a z_1^2 z_2^2).
$$

- Consider the more general model *λ*
	- $S(z_1, z_2) = \frac{1}{4}(z_1^4 + z_2^4 + az_1^2z_2^2).$ 4 $(z_1^4 + z_2^4 + az_1^2z_2^2)$
- Number of independent cycles depends on *a*.

Number of independent cycles

- Consider the more general model $S(z_1, z_2) = \frac{1}{4}(z_1^4 + z_2^4 + az_1^2z_2^2).$ *λ* 4 $(z_1^4 + z_2^4 + az_1^2z_2^2)$
- Number of independent cycles depends on *a*.
- The $O(2)$ -symmetric point $a = 2$ is "critical".

Summary & Outlook

• CL promising approach for systems with a complex-action problem.

• CL promising approach for systems with a complex-action problem.

• Major drawbacks: Runaways (adaptive step size) and wrong convergence.

• Wrong convergence can in principle be fixed by kernels.

- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
	- How to construct them?

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
	- How to construct them?
	- How to verify convergence?

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
	- How to construct them?
	- How to verify convergence?
- Outlook:

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
	- How to construct them?
	- How to verify convergence?
- Outlook:
	- Understand relevance of integration cycles in realistic theories.

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
	- How to construct them?
	- How to verify convergence?
- Outlook:
	- Understand relevance of integration cycles in realistic theories.
	- (Heavy-dense) QCD with kernels.

Effect of a kernel in 1D

Effect of a kernel in 2D

• Example:
$$
S(z) = \frac{z^4}{4}
$$
.

- Complexification can introduce runaway trajectories leading to diverging simulation.
- Overcome via adaptive step-size control. Aarts et al. '10

$$
z \to z - \frac{\partial S(z)}{\partial z} \varepsilon + \sqrt{\varepsilon} \eta
$$

Runaways

Integration cycles in higher dimensions

玉

 a_1 $a₂$ $a₃$ $a₄$ $a₅$ a_6 $a₇$ a_8 $a₉$