Kernels and integration cycles in complex Langevin simulations

LATTICE 2024 - 29/07/2024

Michael Mandl with Michael W. Hansen, Dénes Sexty and Erhard Seiler

FWF Austrian Science Fund

Kernels and integration cycles in complex Langevin simulations

Michael Mandl with Michael W. Hansen, Dénes Sexty and Erhard Seiler Wednesday @ 11:55 Tuesday @ 15:05

LATTICE 2024 - 29/07/2024

FWF Austrian Science Fund

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem:

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem: $\langle \mathcal{O} \rangle = \int dx \mathcal{O}(x) \rho(x)$

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem: $\langle \mathcal{O} \rangle = \int dx \mathcal{O}(x) \rho(x)$ $\rho(x) \propto e^{-S(x)} \notin \mathbb{R}$

- QCD at finite density poorly understood.
- Lattice methods based on importance sampling fail due to the sign problem:
 ⟨𝔅⟩ = ∫ dx𝔅(x)ρ(x)
 ρ(x) ∝ e^{-S(x)} ∉ ℝ
 ⇒ probabilistic interpretation lost.

• Complexify $x \rightarrow z = x + iy$, evolve statistical system in fictitious time direction τ .

Klauder '83; Parisi '83

• Complexify $x \rightarrow z = x + iy$, evolve statistical system in fictitious time direction τ .

Complex Langevin equation

$$\frac{\partial S(z)}{\partial z} + \eta(\tau)$$

• Complexify $x \to z = x + iy$, evolve sta Complex La $\frac{dz}{d\tau} = -\frac{1}{d\tau}$ drift term

Klauder '83; Parisi '83

• Complexify $x \rightarrow z = x + iy$, evolve statistical system in fictitious time direction τ .

• Complexify $x \rightarrow z = x + iy$, evolve statistical system in fictitious time direction τ . **Complex Langevin equation** dz $\partial S(z)$ $\eta(\tau)$ $d\tau$ ∂z Gaussian noise: drift term $\langle \eta(\tau) \rangle = 0$

Klauder '83; Parisi '83

Klauder '83; Parisi '83

3

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Complex Langevin simulations can give wrong results despite converging properly.

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

• Correct convergence only for $|l| \le 2$. Okamoto et al. '89

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

- Correct convergence only for $|l| \le 2$. Okamoto et al. '89
- In general, we do not know if results are correct.

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

- Correct convergence only for $|l| \le 2$. Okamoto et al. '89
- In general, we do not know if results are correct.
- Want: Correctness criterion.

• Example:
$$S(z) = \frac{\lambda}{4} z^4$$
, $\lambda = e^{\frac{i\pi l}{6}}$

- Correct convergence only for $|l| \le 2$. Okamoto et al. '89
- In general, we do not know if results are correct.
- Want: Correctness criterion.

Boundary terms

Boundary terms

integrate by parts without appearance of boundary terms.

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of PO, such that one can

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

$$B_{\mathcal{O}(z)}(Y) = \left\langle \Theta \left(Y - |z| \right) L \mathcal{O}(z) \right\rangle$$

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of PO, such that one can

× Δ Х •____X <mark>∛</mark> -2 Δ <mark>⊗</mark>_1 -5 simulation <mark>⊠</mark>0 Δ exact X 2nd Riemann sheet 5 (4) ⊠1 <mark>8</mark>2 Δ

4

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

$$B_{\mathcal{O}(z)}(Y) = \left\langle \Theta \left(Y - |z| \right) L \mathcal{O}(z) \right\rangle$$

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of PO, such that one can

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

$$B_{\mathcal{O}(z)}(Y) = \left\langle \Theta \left(Y - |z| \right) L \mathcal{O}(z) \right\rangle$$

• Can infer incorrect solutions from non-vanishing boundary terms.

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of PO, such that one can

Boundary terms

- integrate by parts without appearance of boundary terms.
- Can measure boundary terms:

$$B_{\mathcal{O}(z)}(Y) = \left\langle \Theta \left(Y - |z| \right) L \mathcal{O}(z) \right\rangle$$

- Can infer incorrect solutions from non-vanishing boundary terms.
- Cannot infer correct solutions from vanishing boundary terms.

Aarts et al. '11; Scherzer et al. '19

• Formal argument for correctness relies on fast decay of PO, such that one can

• Integration paths connecting zeros of $\rho(z)$.

see also Witten '11

- Integration paths connecting zeros of $\rho(z)$.
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$.

see also Witten '11

- Integration paths connecting zeros of $\rho(z)$.
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$.
- Three independent cycles, γ_1 is the relevant one.

- Integration paths connecting zeros of $\rho(z)$.
- Example: $\rho(z) = e^{-\frac{z^4}{4}}$.
- Three independent cycles, γ_1 is the relevant one.
- Vanishing boundary terms only imply that result is linear combination of integration cycles:

$$\langle \mathcal{O} \rangle_{\text{CL}} = \sum_{i=1}^{3} a_i \langle \mathcal{O} \rangle_{\gamma_i}$$

May introduce kernel into Langevin equation: Parisi, Wu '81; Söderberg '88

May introduce kernel into Langevin equation: \bullet Parisi, Wu '81; Söderberg '88

$$\frac{\partial z}{\partial \tau} = -\frac{K}{\frac{\partial S(z)}{\partial z}} + \sqrt{K} \eta(\tau)$$

May introduce kernel into Langevin equation: \bullet Parisi, Wu '81; Söderberg '88

$$\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)$$

Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$

• May introduce kernel into Langevin equation: Parisi, Wu '81; Söderberg '88

$$\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)$$

Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$

• May introduce kernel into Langevin equation: Parisi, Wu '81; Söderberg '88

$$\frac{\partial z}{\partial \tau} = -K \frac{\partial S(z)}{\partial z} + \sqrt{K} \eta(\tau)$$

Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$

• May introduce kernel into Langevin equation: Parisi, Wu '81; Söderberg '88

$$\frac{\partial z}{\partial \tau} = -\frac{K}{\frac{\partial S(z)}{\partial z}} + \sqrt{K} \eta(\tau)$$

- Example: $S = \frac{\lambda}{4} z^4$, $\lambda = e^{\frac{5i\pi}{6}}$, $K = e^{-\frac{i\pi m}{24}}$.
- Kernel can restore correct convergence. Okamoto et al. '89

- Consider $S(z_1, z_2) = \frac{\lambda}{4}(z_1^2 + z_2^2)^2$.
- $e^{-S(z_1,z_2)}$ has 16 zeros but there are only 2 independent integration cycles.

• Consider the more general model

$$S(z_1, z_2) = \frac{\lambda}{4}(z_1^4 + z_2^4 + az_1^2 z_2^2).$$

• Consider the more general model

$$S(z_1, z_2) = \frac{\lambda}{4}(z_1^4 + z_2^4 + az_1^2 z_2^2).$$

- Consider the more general model $S(z_1, z_2) = \frac{\lambda}{4}(z_1^4 + z_2^4 + az_1^2 z_2^2).$
- Number of independent cycles depends on *a*.

Number of independent cycles

- Consider the more general model $S(z_1, z_2) = \frac{\lambda}{4}(z_1^4 + z_2^4 + az_1^2 z_2^2).$
- Number of independent cycles depends on *a*.
- The O(2)-symmetric point a = 2 is "critical".

Summary & Outlook

• CL promising approach for systems with a complex-action problem.

• CL promising approach for systems with a complex-action problem.

• Major drawbacks: Runaways (adaptive step size) and wrong convergence.

• Wrong convergence can in principle be fixed by kernels.

- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
 - How to construct them?

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
 - How to construct them?
 - How to verify convergence?

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
 - How to construct them?
 - How to verify convergence?
- Outlook:

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
 - How to construct them?
 - How to verify convergence?
- Outlook:
 - Understand relevance of integration cycles in realistic theories.

- CL promising approach for systems with a complex-action problem.
- Major drawbacks: Runaways (adaptive step size) and wrong convergence.
- Wrong convergence can in principle be fixed by kernels.
 - How to construct them?
 - How to verify convergence?
- Outlook:
 - Understand relevance of integration cycles in realistic theories.
 - (Heavy-dense) QCD with kernels.

Effect of a kernel in 1D

Effect of a kernel in 2D

Runaways

$$z \to z - \frac{\partial S(z)}{\partial z} \varepsilon + \sqrt{\varepsilon \eta}$$

• Example:
$$S(z) = \frac{z^4}{4}$$
.

- Complexification can introduce runaway trajectories leading to diverging simulation.
- Overcome via adaptive step-size control. Aarts et al. '10

Integration cycles in higher dimensions

X

 a_1 a_2 **a**3 a_4 a_5 a_6 **a**7 a_8 a_9