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Handout version*

• This handout is a slightly modified version of the talk given at Lattice 2024. Some 
additional comments have been added in order to give context to the slides shown. 

• Slides marked by an asterisk (*) were not part of the original talk.



Motivation

• QCD at finite density poorly understood. 

• Lattice methods based on importance 
sampling fail due to the sign problem: 

 

  

 probabilistic interpretation lost.

⟨𝒪⟩ = ∫ dx𝒪(x)ρ(x)

ρ(x) ∝ e−S(x) ∉ ℝ
⟹

?
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Possible solution: Complex Langevin



Motivation*

• The main motivation for this work is to understand the phase diagram of QCD, one 
conjectured version of which is shown on the previous slide. The finite-temperature 
region close to the -axis is under good theoretical control, mostly due to first 
principles lattice calculations.  

• In the finite-densite region, however, lattice methods based on importance sampling 
cannot be applied in a straightforward way due to the infamous sign problem. 
There, the (Euclidean) action  of the theory becomes complex. The conventional 
lattice approach, which is based on drawing samples from a “probability 
distribution” , can thus no longer be applied.
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• Complexify , evolve statistical system in fictitious time direction . 

• Obtain target theory  in equilibrium limit .

x → z = x + iy τ

e−S(z) τ → ∞

The complex Langevin equation
Klauder	’83;	Parisi	‘83

Complex Langevin equation

dz
dτ

= −
∂S(z)

∂z
+ η(τ)

2

Gaussian noise: 
⟨η(τ)⟩ = 0

⟨η(τ)η(τ′ )⟩ = 2δ(τ − τ′ )
drift term



The complex Langevin equation*
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• The complex Langevin approach — like a few other attempts of solving the sign problem — is based upon 
the complexification of the underlying field manifold.  

• Moreover, one introduces an artificial time dimension (the “Langevin time”)  and interprets the system of 
interest as a statistical one coupled to a heat reservoir at fixed temperature and reaching equilibrium as 

. The evolution in  is controlled by the Langevin (stochastic differential) equation. Since the 
Langevin equation is a stochastic one, there is a corresponding probability density for , whose 
-evolution is governed by a so-called Fokker-Planck equation. 

• For real , this probability density can — under mild assumptions — be shown to converge to the desired 
weight . For complex , on the other hand, the -evolution produces a probability density  in 
the complex plane, which — ideally — would reproduce the desired expectation values via 

. As is discussed next, however, this is not always true.

τ

τ → ∞ τ
z τ

S
e−S S τ P(x, y)

∫ dx𝒪(x)e−S(x) = ∫ dxdy𝒪(x + iy)P(x, y)



Wrong convergence
Drawbacks and pitfalls

• Complex Langevin simulations can give wrong 
results despite converging properly. 

• Example: ,  . 

• Correct convergence only for  .  

• In general, we do not know if results are correct. 

• Want: Correctness criterion. 

S(z) =
λ
4

z4 λ = e
iπl
6

| l | ≤ 2
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Okamoto	et	al.	’89



• As the simple example on the previous slide, where we discuss , computed both analytically 
and in a complex Langevin simulation, shows, the complex Langevin equation can sometimes 
produce incorrect solutions despite converging to a proper equilibrium distribution. 

• The main problem with this is that — in general — we cannot tell whether the results we obtain 
from a complex Langevin simulation are correct, since we cannot compare to exact results or to 
other methods. One thus would like to have some correctness criterion that can distinguish 
between correct and incorrect results. 

• It is curious to note that if one continues  in the analytical solution to the second Riemann 
sheet, one does find agreement with complex Langevin results for , where one otherwise 
would not. This will be discussed further later.

⟨z2⟩

λ
l = 5

Wrong convergence
Drawbacks and pitfalls*
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B𝒪(z)(Y) = ⟨Θ (Y − |z |) L𝒪(z)⟩

• Formal argument for correctness relies on fast decay of , such that one can 
integrate by parts without appearance of boundary terms. 

• Can measure boundary terms:  

• Can infer incorrect solutions from non-vanishing boundary terms. 

• Cannot infer correct solutions from vanishing boundary terms.

P𝒪

Boundary terms
Aarts	et	al.	’11;	Scherzer	et	al.	‘19
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Boundary terms*

• On the previous slide, I introduced so-called boundary terms as possible correctness criteria. 
Namely, a formal proof of correctness of the complex Langevin approach relies on the absence 
of boundary terms such that one can integrate by parts in certain integrals. The presence of 
boundary terms spoils this requirement. 

• Now, one can measure the (possibly) appearing boundary terms in a simulation and — ideally 
— use them to distinguish correct from incorrect results. For this, one typically introduces a 
cutoff  in the complex plane and looks for a plateau of the boundary terms in , which one 
then extrapolates to . 

• Indeed, non-vanishing boundary terms (i.e., a plateau at non-vanishing values) imply incorrect 
solutions, a desirable property. Unfortunately, however, the absence of boundary terms does 
not imply that the obtained results are correct, as I show via a counter example.

Y Y
Y → ∞
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• Integration paths connecting zeros of  . 

• Example:  . 

• Three independent cycles,  is the relevant one. 

• Vanishing boundary terms only imply that result is 
linear combination of integration cycles: 

ρ(z)

ρ(z) = e− z4
4

γ1
�1

�2

�3 �4

�5 �6

Integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi
Salcedo,	Seiler	’19

5

see	also	Witten	‘11



Integration cycles*

• In general, the absence of boundary terms does not indicate that the obtained results 
are correct, but only that they are a linear combination of observables computed 
along all (independent) integration cycles (defined on the previous slide) of the theory. 

• In practical applications one neither knows what the observables computed along 
cycles are (if one did, one would have solved the theory because  is the result of 
interest), nor the values of the coefficients. 

• In the example shown, there are six possible integration cycles. However, only three of 
them are independent, since, e.g., .

⟨𝒪⟩γ1

∫γ5

+ ∫γ6

= ∫γ1
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• May introduce kernel into Langevin equation: 

• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

S =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

Complex Langevin evolution with a kernel

∂z
∂τ

= −K
∂S(z)

∂z
+ K η(τ)

Okamoto	et	al.	’89
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Parisi,	Wu	’81;	Söderberg	‘88



Complex Langevin evolution with a kernel*

• The introduction of kernels provides a generalization to the (real or complex) Langevin 
equation. For real , one can show that its introduction leaves the stationary 
distribution  unchanged, but convergence might be improved. For complex , the 
situation is less clear since a kernel in general changes the equilibrium distribution in the 
complex plane, . 

• Nonetheless, as shown on the previous slide, a correctly chosen kernel can indeed lead 
to correct convergence where the complex Langevin approach would otherwise fail. 

• Note that we consider the simplest choice of kernel here. In general, it can depend on , 
in which case there would be an additional term  in the Langevin equation.

S
e−S S

P(x, y)

z
∂K
∂z
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• Recall: 

•  is the real integration cycle. 

• Kernel can favor certain cycles. 

• Only proven for a single degree of freedom.

γ1

Kernels and integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi
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see	also	Salcedo	’93



Kernels and integration cycles*

• Here we explore the relation between kernels, which can restore correct convergence, and 
integration cycles. Recall that incorrect convergence (in the absence of boundary terms, which 
we shall always assume from now on) can be traced back to contributions from integration 
cycles other than the real one. 

• Indeed, we find that the kernel can be chosen in such a way that only the real cycle contributes, 
thus guaranteeing correct results. On the other hand, a bad choice of kernel can lead to other 
cycles becoming dominant, thus giving incorrect results, but nonetheless vanishing boundary 
terms. In the example shown,  corresponds to an integration over the imaginary axis.  

• The fact that the complex Langevin simulation for  and  on slide 3 reproduces 
the “2nd Riemann sheet” result can be traced back to non-vanishing contributions from cycles 
other than the real one.

γ2

K = 0 λ = e±5iπ/6
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• Consider . 

•  has 16 zeros but there are only  
2 independent integration cycles. 

•   

S(z1, z2) =
λ
4

(z2
1 + z2

2)2

e−S(z1,z2)

Integration cycles in higher dimensions
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⟨𝒪⟩CL
?=

2

∑
i=1

ai ⟨𝒪⟩γi

λ = e
iπ
6

K = e− iπm
24

λ



Integration cycles in higher dimensions*

• Since the theorem relating the absence of boundary terms to a linear combination of integration cycles 
was only proven for a single degree of freedom, we tried to verify its validity in higher dimensions. Here we 
consider two degrees of freedom and a straightforward extension of the model studied previously. 

• Curiously, for the -symmetric model discussed on the previous slide there are only two independent 
integration cycles despite  having 16 zeros in the complex plane.  

• We aimed at verifying the aforementioned theorem and indeed succeeded in doing so. We find that for our 
choice of kernel (which is the most simple one, being independent of  and acting the same on  and ), 
either  or  contribute in an exclusive way, but there is no mixing. We emphasize, however, that this does 
not need to be the case in general and we have found counter-examples in different two-variable theories.  

• We also mention that there are large regions (in the parameter  characterizing the kernel) in which we 
find boundary terms, i.e., expect the theorem to not be applicable, and thus refrain from showing results. 

O(2)
e−S

zi z1 z2
γ1 γ2

m
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• Consider the more general model 

. 

• Number of independent cycles depends on . 

• The -symmetric point  is “critical”.

S(z1, z2) =
λ
4

(z4
1 + z4

2+az2
1z2

2)

a

O(2) a = 2

Number of independent cycles
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Number of independent cycles*

• We find that the number of independent integration cycles can depend on the 
“coupling” of a theory. The model on the previous slide, which reduces to the one 
discussed before for , either has 9 independent cycles (for small ) or 2 (for 
larger ). The “transition” happens precisely at the symmetric point , where 
the number of independent cycles happens to be 2. 

• It would be interesting to study to which extent — if at all — non-real integration 
cycles play a role in more realistic theories, i.e., lattice models or even QCD. If they 
turn out to be relevant generically, one has to be careful in designing appropriate 
kernels since boundary terms are then not a reliable correctness criterion.

a = 2 |a |
|a | a = 2
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Summary & Outlook
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• CL promising approach for systems with a complex-action problem.

• Major drawbacks: Runaways (adaptive step size) and wrong convergence. 

• Wrong convergence can in principle be fixed by kernels. 
• How to construct them? 
• How to verify convergence?

• Outlook:  
• Understand relevance of integration cycles in realistic theories. 
• (Heavy-dense) QCD with kernels.



Contact*

• For any questions/discussion, please do not hesitate to contact the author via 
michael.mandl@uni-graz.at .

mailto:michael.mandl@uni-graz.at

