Diffusion models and quantisa[tion in](https://inspirehep.net/conferences/2666451) [lattic](https://arxiv.org/abs/2311.03578)[e](https://arxiv.org/abs/2309.17082) f

Gert Aarts

with Lingxiao Wang, Kai Zhou and Di

JHEP 05 (2024) 060 [2309.17082 [h NeurlPS 2023^{[2311.03578} [hep-

Swansea ML-LFT group

Chanju Park, Diaa Habibi, Shiyang Chen, GA, Biagio Lucini, Matteo Favoni

2

Presentations

■ Monday:

• Wednesday:

■ Friday:

Random Matrix Theory for Stochastic Gradient Descent Chanju Park $11:15 - 11:35$

■ Poster: Matteo Favoni

Towards the application of random matrix theory to neural networks

Generative AI and LFT

- \circ in recent years, rich programme to apply methods of AI/ML to lattice field theories
- \circ in particular, employ ML to generate LFT configurations beyond standard (well-tested and well-understood) approaches, such as HMC
- o why? reduce auto-correlations, critical slowing down, and because it is really cool!

two schemes: devise ML algorithms to approximate

- target distribution, $\sim e^{-S}$, directly, e.g. normalising flow
- underlying distribution by learning from data, e.g. diffusion models

Diffusion models

- \circ very popular ML method: used in DALL-E, Stable Diff
- \circ used to generate "fake" images on the internet
- o based on concepts of non-equilibrium physics

Deep Unsupervised Learning using **Nonequilibrium Thermodynamics**

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, Surya Ganguli Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:2256-2265, 2015.

- can we use DMs in LFT?
- **•** physics connection with existing methods?
- § competitive with other approaches? 5

Generative AI: Diffusion model

underlying model is based on Brownian motion, i.e. Lan

- \circ start with data set of images
- \circ [make the images more bl](https://theaisummer.com/diffusion-models/)urred by applying noise (for
- \circ learn steps in this process … and then revert it
- o create new images from noise

https://theaisummer.com/diffusion-models/ The Control of the Reve

Prior and target distributions

- o **target distribution** describes the data: not known in real-world applications $P(\text{cats}, \text{dogs}) \sim \exp[-S(\text{cats}, \text{dogs})]$?
- \circ learn grad log P under application of noise with increasing variance: score matching
- o in practice achieved using some ML architecture (not discussed here)
- o **prior distribution**: simple, e.g. Gaussian
- \circ backward or denoising process: apply grad log P to retrieve target distribution
- o **after training** (score determination): generate new images using backward process

Prior and target distributions

in pictures: p_0 is target (non-trivial), p_T is the prior (easy) \overline{O}

DMs and stochastic quantisation

- dynamics of backward process is stochastic process with time-dependent drift and noise variance $\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_{\phi} \log P(\phi;\tau) + g(\tau) \eta(x,\tau)$ o if $P(\phi;\tau) = \frac{e^{-S(\phi,\tau)}}{Z}$ such that $\nabla_{\phi} \log P(\phi,\tau) = -\nabla_{\phi} S(\phi,\tau)$ $\frac{\partial \phi(x,\tau)}{\partial \tau} = -g^2(\tau)\nabla_{\phi}S(\phi,\tau) + g(\tau)\eta(x,\tau)$ o then
- o stochastic quantisation (Parisi & Wu 1980)
- path integral quantisation via a stochastic process in fictitious time

$$
\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_\phi S(\phi) + \eta(x,\tau)
$$

DMs and stochastic quantisation

$$
\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_{\phi} \log P(\phi;\tau) + g(\tau) \eta(x,\tau)
$$

$$
\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_{\phi} S(\phi) + \eta(x,\tau)
$$

similarities and differences:

- \checkmark SQ: fixed drift, determined from known action constant noise variance (but can be generalised using kernels) thermalisation followed by long-term evolution in equilibrium
- \checkmark DM: drift and noise variance time-dependent, learn from data evolution between $0 \leq \tau \leq T = 1$ many short runs, very rapid thermalisation no correlations between runs

Stochastic quantisation and diffusion models

diffusion models as an alternative approach to stochastic quantisation \bigcirc

Diffusion model for 2d ϕ^4 scalar theory

- $32²$ lattice, choice of action parameters in symmetric and broken phase
- o training data set generated using Hybrid Monte Carlo (HMC)
- o variance expanding DM trained using U-Net architecture

generating configurations:

- o broken phase
- o "denoising" (backward process)
- o large-scale clusters emerge, as expected

 $\tau = 0$ $\tau = 0.25$ $\tau = 0.5$ $\tau = 0.75$ $\tau = 1$ 0.8 -0.6 \cdot 0.4 -0.2 l o.o

12

 -0.2

 -0.4

 -0.6

 -0.8

Diffusion model for 2d ϕ^4 scalar theory

generating configurations in symmetric phase

- \circ compute magnetisation $\langle M \rangle$, susceptibility χ_2 , Binder cumulant U_L
- o compare with test HMC data set (with same statistics)

o good agreement is observed

Diffusion model for 2d ϕ^4 scalar theory

- o auto-correlation time (first rough comparison)
- o normalised auto-correlation function

overall:

- o proof of principle
- o expected results obtained
- o need to do detailed comparison of precision, speed and scalability

Evolution of drift/score i n toy model

- o one degree of freedom
- o single/double well
- o from constant action to target action as

Stochastic quantisation: compl

- \circ approach not limited to real-valued distributions/act
- \circ extend Langevin process [to comple](https://arxiv.org/abs/1512.05145)x manifold: comp

$$
z \sim \rho(z) \in \mathbb{C} \quad \Rightarrow \quad x, y \sim P(z)
$$

- \circ convergence not guaranteed, no general solution of
- o a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata,
- o recent applications in QCD (Sexty et al, 2023, 2024)
- o introductory lectures (GA, 1512.05145 [hep-lat])

Complex Langevin and DMs

- o distribution sampled in CL process determined by (real-valued) Fokker-Planck equation
- o but FPE is not solvable generically (unlike for real Langevin)
- \circ hence distribution, and its properties, remain elusive
- learn distribution from CL data using DMs?

see next talk by Diaa Habibi!

Summary and outlook

- \circ diffusion models offer a new approach for ensemble generation to explore in LFT
- \circ learn from data: requires high-quality ensembles
- o use well-trained DMs to enhance statistics, beat critical slowing down, …
- \circ can be incorporated in Markov chain, using accept/reject step
- apply to theories with fermions: DMs learn presence of fermions implicitly?
- apply to complex actions/Langevin: DMs learn elusive real-valued distributions

o …

Stochastic quantisation and diffusion models

diffusion models as an alternative approach to stochastic quantisation \bigcirc

