Diffusion models and stochastic quantisation in lattice field theory

Gert Aarts

with Lingxiao Wang, Kai Zhou and Diaa Habibi

JHEP 05 (2024) 060 [<u>2309.17082</u> [hep-lat]] <u>NeurIPS 2023[2311.03578</u> [hep-lat]]

Lattice 2024, Liverpool, July 2024

Swansea ML-LFT group

Chanju Park, Diaa Habibi, Shiyang Chen, GA, Biagio Lucini, Matteo Favoni

Presentations

Monday:

• Wednesday:

Poster:

Friday:

Exploring Generative Networks for Manifolds with Non-Trivial Topology	Shiyang Chen 12:15 - 12:35
Diffusion models learn distributions generated by complex Langevin dynamics	Diaa Eddin Habibi 🥝 15:15 - 15:35

	Random Matrix Theory for Stochastic Gradient Descent	Chanju Park
		11:15 - 11:35
-		

Matteo Favoni

Towards the application of random matrix theory to neural networks

An introduction to topological data analysis for lattice field theory	Jeffrey Giansiracusa
	11:55 - 12:15
Topological Data Analysis of Monopole Currents in U(1) Lattice Gauge Theory	Xavier Crean
	12:15 - 12:35
Topological Data Analysis, Monopoles and Colour Confinement in SU(3) Yang-Mills	Biagio Lucini
	12:35 - 12:55

Generative AI and LFT

- o in recent years, rich programme to apply methods of AI/ML to lattice field theories
- in particular, employ ML to generate LFT configurations beyond standard (well-tested and well-understood) approaches, such as HMC
- why? reduce auto-correlations, critical slowing down, and because it is really cool!

two schemes: devise ML algorithms to approximate

- target distribution, $\sim e^{-S}$, directly, e.g. normalising flow
- underlying distribution by learning from data, e.g. diffusion models

Diffusion models

- very popular ML method: used in DALL-E, Stable Diffusion, ...
- used to generate "fake" images on the internet 🎉
- based on concepts of non-equilibrium physics

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, Surya Ganguli Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:2256-2265, 2015.

- can we use DMs in LFT?
- physics connection with existing methods?
- competitive with other approaches?

JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

Generative AI: Diffusion models

underlying model is based on Brownian motion, i.e. Langevin or SDEs
 start with data set of images

make the images more blurred by applying noise (forward process)

Prior and target distributions

- **target distribution** describes the data: not known in real-world applications $P(\text{cats}, \text{dogs}) \sim \exp[-S(\text{cats}, \text{dogs})]$?
- learn grad log P under application of noise with increasing variance: score matching
- in practice achieved using some ML architecture (not discussed here)
- o **prior distribution**: simple, e.g. Gaussian
- backward or denoising process: apply grad log *P* to retrieve target distribution
- o **after training** (score determination): generate new images using backward process

Prior and target distributions

• in pictures: p_0 is target (non-trivial), p_T is the prior (easy)

DMs and stochastic quantisation

- dynamics of backward process is stochastic process with time-dependent drift and noise variance
 $\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_\phi \log P(\phi;\tau) + g(\tau) \eta(x,\tau)$ if $P(\phi;\tau) = \frac{e^{-S(\phi,\tau)}}{Z}$ such that $\nabla_\phi \log P(\phi,\tau) = -\nabla_\phi S(\phi,\tau)$ then
 $\frac{\partial \phi(x,\tau)}{\partial \tau} = -g^2(\tau) \nabla_\phi S(\phi,\tau) + g(\tau) \eta(x,\tau)$ then
 $\frac{\partial \phi(x,\tau)}{\partial \tau} = -g^2(\tau) \nabla_\phi S(\phi,\tau) + g(\tau) \eta(x,\tau)$
- stochastic quantisation (Parisi & Wu 1980)
- path integral quantisation via a stochastic process in fictitious time

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_\phi S(\phi) + \eta(x,\tau)$$

DMs and stochastic quantisation

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_{\phi} \log P(\phi;\tau) + g(\tau) \eta(x,\tau)$$

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_{\phi} S(\phi) + \eta(x,\tau)$$

similarities and differences:

- SQ: fixed drift, determined from known action constant noise variance (but can be generalised using kernels) thermalisation followed by long-term evolution in equilibrium
- ✓ DM: drift and noise variance time-dependent, learn from data evolution between $0 \le \tau \le T = 1$ many short runs, very rapid thermalisation no correlations between runs

Stochastic quantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

Diffusion model for 2d ϕ^4 scalar theory

- \circ 32² lattice, choice of action parameters in symmetric and broken phase
- training data set generated using Hybrid Monte Carlo (HMC)
- variance expanding DM trained using
 U-Net architecture

generating configurations:

- o broken phase
- "denoising" (backward process)
- large-scale clusters emerge, as expected

 $\tau = 0$ $\tau = 0.25$ $\tau = 0.5$ $\tau = 0.75$ $\tau = 1$

Diffusion model for 2d ϕ^4 scalar theory

generating configurations in symmetric phase

- \circ compute magnetisation $\langle M \rangle$, susceptibility χ_2 , Binder cumulant U_L
- compare with test HMC data set (with same statistics)

data-set	$\langle M angle$	χ_2	U_L
Training (HMC)	0.0012 ± 0.0007	2.5160 ± 0.0457	0.1042 ± 0.0367
Testing (HMC)	0.0018 ± 0.0015	2.4463 ± 0.1099	-0.0198 ± 0.1035
Generated (DM)	0.0017 ± 0.0015	2.4227 ± 0.1035	0.0484 ± 0.0959

good agreement is observed

Diffusion model for 2d ϕ^4 scalar theory

- auto-correlation time (first rough comparison)
- normalised auto-correlation function

overall:

- proof of principle
- expected results obtained
- need to do detailed comparison
 of precision, speed and scalability

Evolution of drift/score in toy model

one degree of freedom

o single/double well

 from constant action to target action as

 $0 \le \tau \le T = 1$

Stochastic quantisation: complex actions

- approach not limited to real-valued distributions/actions
- o extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

$$z \sim \rho(z) \in \mathbb{C} \quad \Rightarrow \quad x, y \sim P(x, y) \in \mathbb{R}$$

- convergence not guaranteed, no general solution of Fokker-Planck equation
- a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)
- recent applications in QCD (Sexty et al, 2023, 2024)
- introductory lectures (GA, <u>1512.05145</u> [hep-lat])

Complex Langevin and DMs

- o distribution sampled in CL process determined by (real-valued) Fokker-Planck equation
- but FPE is not solvable generically (unlike for real Langevin)
- hence distribution, and its properties, remain elusive
- o learn distribution from CL data using DMs?

see next talk by Diaa Habibi!

Summary and outlook

- o diffusion models offer a new approach for ensemble generation to explore in LFT
- learn from data: requires high-quality ensembles
- o use well-trained DMs to enhance statistics, beat critical slowing down, ...
- can be incorporated in Markov chain, using accept/reject step
- apply to theories with fermions: DMs learn presence of fermions implicitly?
- apply to complex actions/Langevin: DMs learn elusive real-valued distributions

0 ...

Stochastic quantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

