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Generative Al and LFT

o in recent years, rich programme to apply methods of Al/ML to lattice field theories

o in particular, employ ML to generate LFT configurations beyond standard

(well-tested and well-understood) approaches, such as HMC
o why? reduce auto-correlations, critical slowing down, and because it is really cool!
two schemes: devise ML algorithms to approximate

= target distribution, ~e ™, directly, e.g. normalising flow

= underlying distribution by learning from data, e.g. diffusion models



Diffusion models

o very popular ML method: used in DALL-E, Stable Diffusion, ...

. : § o
o used to generate “fake” images on the internet &

o based on concepts of non-equilibrium physics

Deep Unsupervised Learning using
Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, Surya Ganguli Proceedings of the
32nd International Conference on Machine Learning, PMLR 37:2256-2265, 2015.

= can we use DMs in LFT?
JHEP 05 (2024) 060 [2309.17082 [hep-lat]]
= physics connection with existing methods?

= competitive with other approaches?


https://arxiv.org/abs/2309.17082

Generative Al: Diffusion models

underlying model is based on Brownian motion, i.e. Langevin or SDEs

o start with data set of images

o make the images more blurred by applying noise (forward process)

Forward SDE (data — noise)
o learn steps in this process @ dx = £(x, t)dt + g(t)dw

.. and then revert it
R ks 4 |on :
‘(7 [f(x t) k log p ( ]]dt+g dw

Reverse SDE (noise — data)

o create new images from noise

https://theaisummer.com/diffusion-models/
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Prior and target distributions

o target distribution describes the data: not known in real-world applications

P(cats, dogs) ~ exp[—S(cats, dogs)]| ?
o learn grad log P under application of noise with increasing variance: score matching
o in practice achieved using some ML architecture (not discussed here)

o prior distribution: simple, e.g. Gaussian

o backward or denoising process: apply grad log P to retrieve target distribution

o after training (score determination): generate new images using backward process



Prior and target distributions

o in pictures: pg is target (non-trivial), p7 is the prior (easy)
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DMs and stochastic quantisation

o dynamics of backward process is stochastic process with time-dependent drift

and noise variance od(x, T
P0T) — Pr)V s log Plgi7) + glr)n(e, 7
~S(6y7) !
o if P(g;1)= ¢ Z such that V,log P(¢,7) = =V ,S(¢,7)
0d(x, T
o then (bch ) = —g*(1)VS(é,7) + g(7)n(z, T)
o stochastic quantisation (Parisi & Wu 1980)
0¢(z, 7)

o path integral quantisation via a stochastic 5 —V4S(6) +n(z, 7)

process in fictitious time



DMs and stochastic guantisation

0p(x,T)

WNDT) _ 7YV log P(g5 7) + g(rIn(a, ) g~ Ved@)+n@,T)

ot

similarities and differences:

v' SQ: fixed drift, determined from known action
constant noise variance (but can be generalised using kernels)
thermalisation followed by long-term evolution in equilibrium
v" DM: drift and noise variance time-dependent, learn from data
evolution between )0 <7 < 7T =1 many short runs, very rapid thermalisation

no correlations between runs
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Stochastic guantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

theory: p(¢) ~ e E

e.g. HMC

configurations

v

stochastic quantisation

diffusion model, forward process

A

configurations

diffusion model,
backward process
“denoising”

random
configurations
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Diffusion model for 2d ¢* scalar theory

o 322 lattice, choice of action parameters in symmetric and broken phase

o training data set generated using Hybrid Monte Carlo (HMC)
=0 =025 7=05

o variance expanding DM trained using

U-Net architecture

generating configurations:
o broken phase
o “denoising” (backward process)

o large-scale clusters emerge, as expected




Diffusion model for 2d ¢* scalar theory

generating configurations in symmetric phase

o compute magnetisation (M), susceptibility y, , Binder cumulant U}
o compare with test HMC data set (with same statistics)

data-set (M) X2 UL

Training (HMC)
Testing (HMC)
Generated (DM)

0.0012+ 0.0007
0.0018 £ 0.0015
0.0017&£ 0.0015

2.5160 £ 0.0457
2.4463 £ 0.1099
2.4227 + 0.1035

0.1042 £+ 0.0367
-0.0198 £ 0.1035
0.0484 £ 0.0959

o good agreement is observed
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Diffusion model for 2d ¢* scalar theory

o auto-correlation time (first rough comparison)

o normalised auto-correlation function

overall:

o proof of principle

o expected results obtained

o need to do detailed comparison

of precision, speed and scalability
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Evolution of
drift/score in
toy model

o one degree of freedom
o single/double well

o from constant action

to target action as

0<7<T=1
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Stochastic guantisation: complex actions

o approach not limited to real-valued distributions/actions

o extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)
z~p(z)eC = z,y~ Px,y) €R
convergence not guaranteed, no general solution of Fokker-Planck equation

a posteriori justification (Ga, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)

recent applications in QCD (sexty et al, 2023, 2024)

O O O O

introductory lectures (GA, 1512.05145 [hep-lat])
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https://arxiv.org/abs/1512.05145

Complex Langevin and DMs

o distribution sampled in CL process determined by (real-valued) Fokker-Planck equation
o but FPE is not solvable generically (unlike for real Langevin)

o hence distribution, and its properties, remain elusive

o learn distribution from CL data using DMs?

see next talk by Diaa Habibi!
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Summary and outlook

diffusion models offer a new approach for ensemble generation to explore in LFT
learn from data: requires high-quality ensembles
use well-trained DMs to enhance statistics, beat critical slowing down, ...

O O O O

can be incorporated in Markov chain, using accept/reject step

apply to theories with fermions: DMs learn presence of fermions implicitly?

O

o apply to complex actions/Langevin: DMs learn elusive real-valued distributions
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Stochastic guantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

theory: p(¢) ~ e E

e.g. HMC

configurations

v

stochastic quantisation

diffusion model, forward process

A

configurations

diffusion model,
backward process
“denoising”

random
configurations
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