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§  Poster:  Matteo Favoni 

Towards the application of random matrix theory to neural networks 

§ Friday:
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Generative AI and LFT

o   in recent years, rich programme to apply methods of AI/ML to lattice field theories

o   in particular, employ ML to generate LFT configurations beyond standard  
     (well-tested and well-understood) approaches, such as HMC

o   why? reduce auto-correlations, critical slowing down, and because it is really cool!

 two schemes: devise ML algorithms to approximate 
§   target distribution, ~𝑒!" , directly, e.g. normalising flow
§   underlying distribution by learning from data, e.g. diffusion models
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Diffusion models

o  very popular ML method: used in DALL-E, Stable Diffusion, …
o   used to generate “fake” images on the internet  🎉
o   based on concepts of non-equilibrium physics

§   can we use DMs in LFT? 
§   physics connection with existing methods? 
§   competitive with other approaches? 5
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Generative AI: Diffusion models

underlying model is based on Brownian motion, i.e. Langevin or SDEs
o  start with data set of images
 
o  make the images more blurred by applying noise (forward process)

o  learn steps in this process
     … and then revert it

o  create new images from noise

6https://theaisummer.com/diffusion-models/
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Prior and target distributions

o   target distribution describes the data: not known in real-world applications
  𝑃 cats, dogs 	~ exp −𝑆 cats, dogs 	 ?
o   learn grad log 𝑃 under application of noise with increasing variance: score matching
o   in practice achieved using some ML architecture (not discussed here)

o   prior distribution: simple, e.g. Gaussian
o   backward or denoising process: apply grad log 𝑃 to retrieve target distribution

o   after training (score determination): generate new images using backward process
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Prior and target distributions

o   in pictures: 𝑝# is target (non-trivial), 𝑝$ is the prior (easy)
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DMs and stochastic quantisation

o   dynamics of backward process is stochastic process with time-dependent drift 
     and noise variance

o   if         such that 

o   then  

o   stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a stochastic 
     process in fictitious time
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DMs and stochastic quantisation
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similarities and differences:

ü  SQ: fixed drift, determined from known action
     constant noise variance (but can be generalised using kernels)
     thermalisation followed by long-term evolution in equilibrium
ü  DM: drift and noise variance time-dependent, learn from data 
     evolution between        many short runs, very rapid thermalisation
     no correlations between runs



Stochastic quantisation and diffusion models

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory: 𝑝 𝜙 	~	𝑒!"!  

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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Diffusion model for 2d 𝜙! scalar theory

o   32% lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)
o   variance expanding DM trained using 
     U-Net architecture

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
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Diffusion model for 2d 𝜙! scalar theory

generating configurations in symmetric phase

o   compute magnetisation         , susceptibility 𝜒%	, Binder cumulant 𝑈&
o   compare with test HMC data set (with same statistics)

o   good agreement is observed
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Diffusion model for 2d 𝜙! scalar theory

o  auto-correlation time (first rough comparison)
o  normalised auto-correlation function

overall:
o  proof of principle
o  expected results obtained
o  need to do detailed comparison 
    of precision, speed and scalability
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Evolution of 
drift/score in 
toy model

o  one degree of freedom

o  single/double well

o  from constant action 
    to target action as
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Stochastic quantisation: complex actions

o   approach not limited to real-valued distributions/actions
o   extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

o   convergence not guaranteed, no general solution of Fokker-Planck equation
o   a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)

o   recent applications in QCD (Sexty et al, 2023, 2024)

o   introductory lectures (GA, 1512.05145 [hep-lat])
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Complex Langevin and DMs

o   distribution sampled in CL process determined by (real-valued) Fokker-Planck equation
 
o   but FPE is not solvable generically (unlike for real Langevin)

o   hence distribution, and its properties, remain elusive

o   learn distribution from CL data using DMs?

see next talk by Diaa Habibi!
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Summary and outlook

o  diffusion models offer a new approach for ensemble generation to explore in LFT
o   learn from data: requires high-quality ensembles
o   use well-trained DMs to enhance statistics, beat critical slowing down, …
o  can be incorporated in Markov chain, using accept/reject step

o   apply to theories with fermions: DMs learn presence of fermions implicitly?
o  apply to complex actions/Langevin: DMs learn elusive real-valued distributions
o   …
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Stochastic quantisation and diffusion models

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory: 𝑝 𝜙 	~	𝑒!"!  

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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