Grassmann Tensor Renormalization Group for $N_f = 2$ Schwinger model with a θ term

Hayato Kanno

RIKEN Nishina Center, RIKEN BNL Research Center

Based on the work with Shinichiro Akiyama (U. of Tsukuba), Kotaro Murakami (Tokyo Tech.), Shinji Takeda (Kanazawa U.) (in preparation)

Why is a θ term important?

What is a θ term?

- A topological term in 4d QCD or Yang-Mills theory.
- Related to the instanton number.

Strong CP problem

- In our world, $\theta < 10^{-10}$. (from neutron EDM experiments)
- Why is it too small? (Strong CP problem)

Axion [Peccei, Quinn 1977]

- Axion \simeq scalar field which couples to the QCD like θ .
- Candidate for a dark matter
- Application to inflation; Natural inflation [Freese et al. 1990]
- Axion potential = θ dependence of the free energy ($\theta = 0 \pmod{2\pi}$) is the stable point)

 $Z_{YM} = \int \mathcal{D}A \, \mathrm{e}^{-S_{YM}} \supset \sum_{n} \mathrm{e}^{in\theta}$

Introduction (1/2)

Schwinger (2)

TRG (3)

Results (7)

How to calculate QCD with the θ term

Monte Carlo method: the sign problem

- With finite θ , the partition function includes imaginary part.
- \rightarrow The Monte Carlo simulation does not work well.
- There are some studies by the Monte Carlo. e.g.) 4d *SU*(2) YM theory [Kitano et al. 2102.08784]
- But, $\theta = \pi$ point is tough...

Tensor network methods do not have the sign problem!

- It is hard to use tensor network methods for 4d QCD.
- However, tensor networks work well for 2d theories.

 \rightarrow We calculate the Schwinger model (2d toy model of the QCD) by tensor renormalization group (TRG). [Levin, Nave 2007]

Introduction (2/2)

TRG (3)

 $Z_{YM} = \int \mathcal{D}A \, \mathrm{e}^{-S_{YM}} \supset \sum \mathrm{e}^{in\theta}$

Plan

- 1. Introduction (2)
 - Why is the θ term important?
 - How to calculate QCD with θ
- 2. Schwinger model (2)
 - What is the Schwinger model?
 - θ dependence of the free energy

Schwinger (2)

- 4. Results (7)
 - Our set up
 - 2π periodicity
 - Large mass limit
 - Small mass limit
 - Intermediate mass

Results (7)

Conclusion (1)

5. Conclusion (1)

TRG(3)

- 3. TRG (3)
 - TRG

Introduction (2)

Lattice action

What is the Schwinger model? [Schwinger 1962, Coleman 1976, …]

Schwinger model = 2d QED $S = \int d^2x \left\{ \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{\mathrm{i}\theta}{4\pi} \epsilon^{\mu\nu} F_{\mu\nu} + \bar{\psi} \mathrm{i}\gamma^{\mu} (\partial_{\mu} + \mathrm{i}A_{\mu})\psi + m\bar{\psi}\psi \right\}$

- U(1) gauge theory + (fundamental) fermions (2dim U(1) gauge theory has a strong coupling.)
- Chiral symmetry @massless : $\frac{U(N_f)_L \times U(N_f)_R}{U(1)_V \times U(1)_A}$ (N_f : Number of flavor)
- θ term, instanton $(\pi_1(U(1)) \simeq \mathbb{Z})$ $\frac{i}{2\pi} \int F = n \in \mathbb{Z}$
- Fermion mass (Here, we take $m \ge 0$)

Introduction (2)

• m = 0: Chiral symmetry, θ is unphysical (through the $U(1)_A$ anomaly)

TRG (3)

- $m \neq 0$: θ is a physical parameter
- First order phase transition $@\theta = \pi$ (for $N_f \ge 2$)

Schwinger (1/2)

 \rightarrow Most **QCD**-like theory in 2dim! : How much **QCD** like?

gapless " Conclusion (1)

 π

θ

1st-order

phase transition

Results (7)

θ dependence of the free energy

Large mass

Introduction (2)

- U(1) Maxwell theory, gapped
- No propagating d.o.f., we can solve it by hand.
- Free energy: $-\frac{\log Z(\theta)}{g^2 V} = \min_n \frac{1}{8\pi^2} \left(\theta 2\pi n\right)^2$

Small mass ($N_f = 2 \text{ case}$) [Coleman 1976]

- IR EFT is a pion theory $(SU(N_f)_1 WZW model + mass term)$
- The free energy can be calculated by mass perturbation.
- Free energy: $-\frac{\log Z(\theta)}{g^2 V} = \min_{n} \left\{ (e^{\gamma})^{\frac{4}{3}} \pi^{-\frac{5}{3}} 2^{\frac{1}{3}} \left(\frac{m^2}{g^2} \right)^{\frac{2}{3}} \cos^{\frac{4}{3}} \left(\frac{\theta 2\pi n}{2} \right) \right\}$

TRG (3)

- \rightarrow This nature is very similar to the 4d QCD! Unknown part
- The free energy of the intermediate mass regime

Schwinger (2/2)

TRG

Tensor Renormalization Group

Introduction (2)

Schwinger (2)

TRG (3)

Results (7)

TRG

- Real space renormalization for one initial tensor
- From the translation invariance, we just focus on single tensor.
- Singular value decomposition (SVD)
 - Finite cut off for singular values : bond dimension
 - Approximation for TRG.
- Grassmann-TRG [Gu, Verstraete, Wen 1004.2563]
 - Fermion has less d.o.f. by Grassmann path integral.

Lattice action for Schwinger model

- Staggered fermion
- 2d one staggered fermion
 ↔ 2-flavor Dirac fermion

$$S = \sum_{n,\mu} \left[-\frac{1}{g^2} \cos(A_p(n)) - \frac{i\theta}{2\pi} \tilde{A}_p(n) + \frac{1}{2} \left[\eta_\mu(n) \{ \bar{\chi}(n) U_\mu(n) \chi(n+\hat{\mu}) - \bar{\chi}(n+\hat{\mu}) U_\mu^{\dagger}(n) \chi(n) \} + m \bar{\chi}(n) \chi(n) \right] \right]$$

- Lattice translation symmetry is broken
 - To use the staggered fermion, 2 sites for each direction is needed.
 - 2×2 lattice \leftrightarrow one unit site
 - To treat staggered fermion, we use two different tensors for initial tensors.
 - After 2-step iteration, the tensor will be unique.
- Gauge field
- $\log U_p$ type θ term (2 π periodicity of θ is realized.)
- We use Gauss-Legendre quadrature to discretize gauge field.

[Kuramashi, Yoshimura 1911.06480] (TRG for 2dim Maxwell with the θ term)

Introduction (2)

Schwinger (2)

TRG (2/3)

Results (7)

 $\tilde{A}_p(n) = -i \log U_p(n)$

Previous studies for lattice Schwinger model with θ

Lagrange formalism

- Monte Carlo
 - (with sign problem) [Fukaya Onogi 0305004]
 - (Worldline formalism) [Gattringer et al. 1502.05476, 1708.00649]
 - (Bosonized theory) [Ohata 2303.05481]
- TRG
 - 1-flavor Schwinger is studied in [Shimizu, Kuramashi 1403.0642]. (Wilson fermions)
 - 2-flavor is studied in [Butt et al. 1911.01285], but massless. (Worldline formalism)

Hamilton formalism

• Quantum computation

[Chakraborty et al. 2001.00485][Honda et al. 2105.03276][Honda et al. 2110.14105]

- DMRG [Angelides et al. 2303.11016][Dempsey et al. 2305.04437][Itou et al. 2307.16655]...
 - Some collaborations are studying the Schwinger model.
 - Germany, USA, Japan, ...

Introduction (2) Scl

Schwinger (2)

TRG (3/3)

Results (7)

Conclusion (1)

cf.) A. Matsumoto's talk

(Quantum computing session, this morning)

Results

Introduction (2)

Schwinger (2)

TRG (3)

Results (7)

Our set up

$N_f = 2$ Schwinger model on lattice

- Parameters of this theory
 - β (inverse of the gauge coupling, $\beta = 1/(a^2g^2)$)
 - m_0 (mass of the lattice fermion)
- Parameters of discretization
 - *D* (bond dimension)
 - K (number of points in Gauss-Legendre quadrature)
 - L^2 (volume) \leftarrow depends on the iteration number in TRG algorithm.
- Continuum limit
 - $\beta \to \infty$ with fixed β/L^2 , βm_0^2
 - $D \to \infty, K \to \infty$
- What we calculate
 - Free energy density $f = -\left\{\frac{\log Z(\theta)}{g^2 V} \frac{\log Z(\theta=0)}{g^2 V}\right\} = -\left\{\beta \frac{\log Z(\theta)}{L^2} \beta \frac{\log Z(\theta=0)}{L^2}\right\}$ (dimensionless, normalized by the value of $\theta = 0$.)

Introduction (2)	Schwinger (2)	TRG (3)	Results (1/7)	Conclusion (1)
------------------	---------------	---------	---------------	----------------

Our set up

$N_f = 2$ Schwinger model on lattice \leftarrow parameters in this talk

- Parameters of this theory
 - β (inverse of the gauge coupling, $\beta = 1/(a^2g^2)) \leftarrow \beta = 4$
 - m_0 (mass of the lattice fermion)
- Parameters of discretization
 - *D* (bond dimension) $\leftarrow D = 120$
 - K (number of points in Gauss-Legendre quadrature) $\leftarrow K = 25$
 - L^2 (volume) \leftarrow depends on the iteration number in TRG algorithm. $\leftarrow L^2 = 2^{32}$
- Continuum limit
 - $\beta \to \infty$ with fixed β/L^2 , βm_0^2
 - $D \to \infty, K \to \infty$
- What we calculate
 - Free energy density $f = -\left\{\frac{\log Z(\theta)}{g^2 V} \frac{\log Z(\theta=0)}{g^2 V}\right\} = -\left\{\beta \frac{\log Z(\theta)}{L^2} \beta \frac{\log Z(\theta=0)}{L^2}\right\}$ (dimensionless, normalized by the value of $\theta = 0$.)

We take a very large volume, where the value of the free energy stabilize for the volume.

ntroduction (2) Schwinger (2) TRG (3) Results (1/7) Conclusion	roduction (2)	Schwinger (2)	TRG (3)	Results (1/7)	Conclusion
--	---------------	---------------	---------	---------------	------------

2π periodicity

- Plot for free energy density vs θ
- 2π periodicity is obvious.

Introduction (2)

TRG (3)

Schwinger (2)

Results (2/7)

Degeneracy

Ground state degeneracy in TRG

• We can calculate ground state (or vacuum) degeneracy in TRG. [Gu, Wen 0903.1069]

$$X_1 = \frac{\left(\sum_{ru} T_{ruru}\right)^2}{\sum_{ruld} T_{rulu} T_{ldrd}} = \frac{(a)^2}{(b)}$$

- We checked 2-vacua degeneracy at $\theta = \pi$ for large mass parameters.
- $\theta = \pi \pm 0.0001\pi$ shows a single vacuum!
- $\rightarrow 2\pi$ periodicity is obvious!
- In the following parts, we just focus on $\theta \in [0, \pi]$

Conclusion (1)

TRG (3)

Results (3/7)

Large mass limit

- Consistent with the analytic values of lattice action.
- The analytic value of the finite lattice spacing is also calculable. (slightly different from the continuum value)

Introduction (2)

Small mass limit (1)

- There is a lattice artifact @ $\beta m_0^2 = 0$.
 - The free energy should not depend on θ in the massless case. (from the $U(1)_A$ anomaly)
 - This artifact will disappear in $\beta \rightarrow \infty$ limit.
 - The numerical results in a small mass cannot fit to the mass perturbation line.
- We subtract the lattice artifact from small mass results.

$$f(m_0) - f(m_0 = 0)$$

- The subtracted result gets closer to the mass perturbation line. (Black plots)
- The subtracted result is not consistent enough to the mass perturbation line.

Introduction (2)

Schwinger (2)

TRG (3)

Results (5/7)

Small mass limit (2)

- Check of the finite β effect
- In larger β , the numerical results are getting closer to the mass perturbation.
- The finite β effect seems to be severe in this parameter regime.
- In our calculation in $\beta = 4$, we found discrepancy between our results and the mass perturbation for any small mass parameters.
- \rightarrow Larger β calculations are required to check the consistency with the mass perturbation. (For larger β , larger bond dimensions D are required.)

Schwinger (2)

Introduction (2)

Intermediate mass

- Unknown parameter region by any analytical methods.
- The free energies change smoothly by the change of mass parameters
- In small mass regime, the lattice artifact exists.

Introduction (2)

Conclusion

$N_f = 2$ Schwinger model in TRG

- Schwinger model : 2dim QED
 - 4dim QCD-like theory (chiral sym, vacuum structure, ...)
 - *θ* dependence of free energy is also similar.
 - Good to calculate by TRG (Smaller d.o.f. than 4dim theory)
- We calculated θ dependence of the free energy by Grassmann-TRG.
 - 2π periodicity of θ is obvious.
 - Large mass region is consistent.
 - Small mass region is not consistent enough. (finite β effect)
 - Finite mass effects for the intermediate mass regime.
- Future directions
 - Larger β calculations for small mass parameters (To check the consistency with the mass perturbation.) \rightarrow Larger *D* calculation is required!

Introduction (2)	Schwinger (2)	TRG (3)	Results (7)	Conclusion
------------------	---------------	---------	-------------	------------

Back up

Introduction (2)

Schwinger (2)

TRG (3)

Results (7)

D, K dependence

Introduction (2)

Schwinger (2)

TRG (3)

Results (7)

β dependence of the lattice artifact

Introduction (2)

Schwinger (2)

TRG (3)

Results (7)

Intermediate mass (2)

Without the subtraction

- The plot of the topological charge $(\partial f / \partial \theta)$ is almost on straight lines in the large mass.
- The finite mass effect seems to appear as the different slope in the right figure.

$$\frac{\log Z(\theta)}{g^2 V} = \min_{n} \frac{1}{8\pi^2} \left(\theta - 2\pi n\right)^2$$

Intermediate mass (3)

With the subtraction

- We compare to the solid lines (mass perturbation lines).
- The consistency with the mass perturbation is not good in any mass parameters.
- Is this a finite mass effect or a finite β effect?

Intermediate mass (4)

- The plot of $\partial f / \partial \theta$ and its plot scaled by mass.
- The places of the maximum values are different.

(It is constant in the mass perturbation.)

• The mass scaling of the numerical results are different from the mass perturbation.

Degeneracy (2)

• We could not saw two vacua in $m^2/g^2 \leq 10^{-3}$. \rightarrow Finite D effect?

Conclusion (1)

Introduction (2)

TRG (3)

Results (7/11)

Large mass limit

Introduction (2)

Topological susceptibility $@\theta = 0$

θ dependence of the free energy (1)

4d **QCD** ($N_f \ge 2$ case)

Large mass

- SU(N) Yang-Mills theory, gapped
- Free energy can be calculated in large N. [Witten 1980]
- Free energy: $F = -\log Z[\theta] \propto \min(\theta + 2\pi k)^2$

Small mass

Introduction (2)

- IR EFT is a pion theory $(SU(N_f) \text{ non-linear sigma model})$
- For a fermion mass, the pion mass can be introduced perturbatively. $U = e^{i\pi(x)} \in U(N_f)$
 - Mass term: $m\bar{\psi}\psi \leftrightarrow \operatorname{tr}[mU + U^{\dagger}m^{\dagger}]$ Free energy: $F = -\log Z[\theta] \propto -\min_{k} |m| \cos(\frac{\theta + 2\pi k}{N_{f}})$

Schwinger (2/4)

energy

free

energy

 $-3\pi - 2\pi - \pi$

 $-3\pi - 2\pi - \pi$

π

0

Large mass

2π

2π

Зπ

Small mass

Π

0

θ

Зπ

Pion theory (1)

IR effective field theory (EFT) for 4d **QCD** (massless)

• SSB:
$$\frac{U(N_f)_L \times U(N_f)_R}{U(1)_A} \to U(N_f)_V$$

• NG boson = pion
$$\in \frac{U(N_f)_L \times U(N_f)_R}{U(1)_A \times U(N_f)_V} \sim SU(N_f)$$

• Pion theory : non-linear sigma model (with $SU(N_f)_{N_f}$ WZW term)

$$S_{\pi} = \int d^4x \, \frac{f_{\pi}^2}{4} \operatorname{tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] - \int \frac{N_c}{240\pi^2} \operatorname{tr} \left[\left(U^{\dagger} dU \right)^5 \right]$$
$$U = e^{i \frac{\pi(x)}{f_{\pi}}} \in SU(N_f)$$

 f_{π} : the pion decay constant (~QCD scale \rightarrow Not CFT)

• In 2d, no SSB (Coleman-Mermin-Wagner theorem). What happened?

Introduction (2)

TRG (3)

Pion theory (2)

Bosonization (for the **Schwinger model**)

- In 2d, we can use the bosonization technique. [Coleman 1976],[Witten 1984]
 fermion ↔ boson
- Bosonized **Schwinger model** = pion theory

Schwinger (3/6)

• $SU(N_f)$ NLSM with WZW term + η' meson + U(1) gauge theory

$$S = \int d^2x \left\{ \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{iN_f}{4\pi} \left(\phi + \theta\right) \epsilon^{\mu\nu} F_{\mu\nu} + \frac{N_f}{8\pi} \partial_\mu \phi \partial^\mu \phi + \frac{1}{8\pi} \operatorname{tr} \left[\partial_\mu U \partial^\mu U^\dagger\right] \right\} - \frac{i}{12\pi} \int \operatorname{tr} \left[(UdU^\dagger)^3 \right]$$
$$U = e^{i\pi(x)} \in SU(N_f) \qquad \phi: \eta' \text{ meson } (U(1)_A \text{ part, heavier than the pions})$$

- 4d QCD also includes η' meson. (It is decoupled in the IR limit.)
- In IR limit (integrating out η' and photon), $SU(N_f)_1$ WZW model (CFT, c= $N_f 1$)

TRG (3)

• Very similar theory to 4dim QCD!

Introduction (2)

Pion theory (2)

Bosonization (for the **Schwinger model**)

- In 2d, we can use the bosonization technique. [Coleman 1976],[Witten 1984]
 fermion ↔ boson
- Bosonized **Schwinger model** = pion theory

Schwinger (3/6)

• $SU(N_f)$ NLSM with WZW term + η' meson + U(1) gauge theory

$$S = \int d^2x \left\{ \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{iN_f}{4\pi} \left(\phi + \theta\right) \epsilon^{\mu\nu} F_{\mu\nu} + \frac{N_f}{8\pi} \partial_\mu \phi \partial^\mu \phi + \left[\frac{1}{8\pi} \text{tr} \left[\partial_\mu U \partial^\mu U^\dagger \right] \right\} - \frac{i}{12\pi} \int \text{tr} \left[(UdU^\dagger)^3 \right] U = e^{i\pi(x)} \in SU(N_f) \qquad \phi: \eta' \text{ meson } (U(1)_A \text{ part, heavier than the pions)}$$

- 4d QCD also includes η' meson. (It is decoupled in the IR limit.)
- In IR limit (integrating out η' and photon), $SU(N_f)_1$ WZW model (CFT, c= $N_f 1$)

TRG (3)

Conclusion (1)

Results (7)

• Very similar theory to 4dim QCD!

Introduction (2)

Phase transition $@\theta = \pi$

[Gaiotto, Komargodski, Seiberg 1708.06806]

- $N_f = 1$ case
- No massless mode
- If $\theta = \pi$, η meson can be massless.
- In large mass, two vacua degenerate at $\theta = \pi$.

 $N_f > 1$ case

- Massless pions
- In the small mass region, mass perturbation works.
- In all mass, 2 vacua degenerate at $\theta = \pi$.
- First order phase transition at $\theta = \pi$ for all fermion mass.

Schwinger (6/7)

Conclusion (1)

Т

TRG (3)

Why calculate Schwinger model by TRG?

To calculate θ dependence of free energy

• DMRG

- 1+1 dim Hamilton formalism.
- With boundary calculation $\leftarrow 2\pi$ periodicity of θ can be broken by boundary effects!
- Periodic boundary takes a higher cost.
- TRG
 - It is easy to take periodic boundary condition (good for 2π periodicity)
 - Free energy calculation is easy.

→ TRG is better!

- Can be generalized for higher dimensions. (In principle, we can apply it to 4d QCD.) Some negative points
- Lower bond dimension than DMRG.
 - Discretize for 2-directions. \rightarrow Bond dimension for each direction is lower than DMRG.
- Correlation function is more difficult.